Chapter 7 Hardware Implementation

157




Most of this manual describes functions—what the Apple Ile does. This
chapter, on the other hand, describes objects: the pieces of hardware the
Apple Ile uses to carry out its functions. If you are designing a piece of
peripheral hardware to attach to the Apple Ile, or if you just want to know
more about how the Apple Ile is built, you should study this chapter.

Environmental Specifications

The Apple Ile is quite sturdy when used in the way it was intended.
Table 7-1 defines the conditions under which the Apple Ile is designed to
function properly.

Table 7-1. Summary of Environmental Specifications

Operating Temperature: 0°to 45° C (30° to 115° F)
Relative Humidity: 5% to 86%
Line Voltage: 107 to 132 VAC

You should treat the Apple Ile with the same kind of care as any other
electrical appliance. You should protect it from physical violence, such as
hammer blows or defenestration. You should protect the mechanical
keyboard and the electrical connectors inside the case from spilled liquids,
especially those with dissolved contaminants, such as coffee and cola
drinks.

In normal operation, enough air flows through the slots in the case to keep
the insides from getting too hot, although some of the parts inside the
Apple Ile normally get rather warm to the touch. If you manage to overheat
your Apple Ile, by blocking the ventilation slots in the top and bottom for
example, the first symptom will be erratic operation. The memory devices
in the Apple Ile are sensitive to heat: when they get too hot, they
occasionally change a bit of data. The exact result depends on what kind of
program you are running and on just which bit of memory is affected.

Chapter 7: Hardware Implementation




The Power Supply

T T e
The power supply in the Apple Ile operates on normal household AC power
and provides enough low-voltage electrical power for the built-in electronics
plus a full complement of peripheral cards, including disk controller cards
and communications interfaces. The basic specifications of the power
supply are listed in Table 7-2.

The Apple Ile's power cord should be plugged into a three-wire 110- to
120-volt outlet. You must connect the Apple lle to a grounded outlet or to a
good earth ground. Also, the line voltage must be in the range given in
Table 7-2. If you try to operate the Apple lle from a power source with more
than 140 volts, you will damage the power supply.

Table 7-2. Power Supply Specifications

Line voltage: 107V to 132V AC

Maximum power consumption: B0W continuous
80W intermittent®

Supply voltages: +5V =3%
+11.8V £6%
5.2V +10%
-12V £ 10%

Maximum supply currents: +5V: 2.6A
+12V: 1.5A continuous,
2.5A intermittent*
-5V: 250mA
-12V: 260mA

Maximum case temperature: 55° C(130° F)

* Intermittent operation: The Apple Ile can safely operate for up to twenty minutes at the
higher load if followed by at least ten minutes at normal load.

The Power Supply 159




The Apple Ile uses a custom-designed switching-type power supply. It is
small and lightweight, and it generates less heat than other tvpes of power
supplies do.

The Apple Ile’s power supply works by converting the AC line voltage to DC
and using this DC voltage to power a variable-frequency oscillator. The
oscillator drives a small transformer with many separate windings to
produce the different voltages required. A circuit compares the voltage of
the +5-volt supply with a reference voltage and feeds an error signal back
to the oscillator circuit. The oscillator circuit uses the error signal to control
the frequency of its oscillation and keep the output voltages in their normal
ranges.

The power supply includes circuitry to protect itself and the other
electronic parts of the Apple lle by turning off all four supply voltages
whenever it detects one of the following malfunctions:

o any supply voltage short-circuited to ground
o the power-supply cable disconnected
o any supply voltage outside the normal range

Any time one of these malfunctions occurs, the protection circuit stops the
oscillator, and all the output voltages drop to zero. After about half a second,
the oscillator starts up again. If the malfunction is still occurring, the
protection circuit stops the oscillator again. The power supply will continue
to start and stop this way until the malfunction is corrected or the power is
turned off.

AWarning If you think the power supply is broken, do not attempt to repair it
yourself. The power supply is in a sealed enclosure because some of its
circuits are connected directly to the power line. Special equipment is
needed to repair the power supply safely, so see your authorized Apple
dealer for service,

160 Chapter 7: Hardware Implementation




The Power Connector
T e ey W~ R |

The cable from the power supply is connected to the main circuit board by a
six-pin connector with a strain-relief catch. The connector pins are
identified in Table 7-3 and Figure 7-13d.

Table 7-3. Power Connector Signal Specifications

Pin Number  Name Description

1,2 Ground Common electrical ground
3 +5V +5V from power supply

4 +12V +12V from power supply
5 -12V -12V from power supply

6 -5V -5V from power supply

The 65C02 Microprocessor

See Appendix A for a description of the
65C02's instruction set and electrical
characteristics.

T e e e R S S T P T A e ey

The enhanced Apple Ile uses a 65C02 microprocessor as its central
processing unit (CPU). The 65C02 in the Apple Ile runs at a clock rate of
1.023 MHz and performs up to 500,000 eight-bit operations per second. You
should not use the clock rate as a criterion for comparing different types of
microprocessors. The 65C02 has a simpler instruction cycle than most other
microprocessors and it uses instruction pipelining for faster processing. The
speed of the 65C02 with a IMHz clock is equivalent to other types of
microprocessors with clock rates up to 2.5MHz.

The 65C02 has a sixteen-bit address bus, giving it an address space of 64K
(2 to the sixteenth power or 65536) bytes. The Apple Ile uses special
techniques to address a total of more than 64K: see the sections
“Bank-Switched Memory” and “Auxiliary Memory and Firmware” in
Chapter 4 and the section “Switching I/0 Memory” in Chapter 6.

The 65C02 Microprocessor 181



Table 7-4. 65C02 Microprocessor Specifications

Type: 66C02

Register Complement: 8-bit Accumulator (A)
8-bit Index Registers (X,Y)
8-bit Stack Pointer (S)
8-bit Processor Status (P)
16-bit Program Counter (PC)

Data Bus: Eight bits wide
Address Bus: Sixteen bits wide
Address Range: 65,036 (64K)
Interrupts: IRQ (maskable)
NMI (non-maskable)
BRK (programmed)
Operating Voltage: +5V (% 5%)
Power Dissipation: 5mW (at 1 MHz)

65C02 Timing

A ST e

The operation of the Apple Ile is controlled by a set of synchronous timing
signals, sometimes called clock signals. In electronics, the word clock is
used to identify signals that control the timing of circuit operations. The
Apple Ile doesn't contain the kind of clock you tell time by, although its
internal timing is accurate enough that a program running on the Apple Ile
can simulate such a clock.

The frequency of the oscillator that generates the master timing signal is
14.31818 MHz. Circuitry in the Apple Ile uses this clock signal, called 14M,
to produce all the other timing signals. These timing signals perform two
major tasks: controlling the computing functions, and generating the video
display. The timing signals directly involved with the operation of the
65C02 (and 6502 on the original version of the Apple Ile) are described in
this section. Other timing signals are described in this chapter in the
sections “RAM Addressing,” “Video Display Modes,” and “The Expansion
Slots.”

The main 656C02 timing signals are listed in Table 7-b, and their
relationships are diagrammed in Figure 7-1. The 65C02 clock signals are ¢1
and ¢0, complementary signals at a frequency of 1.02273 MHz. The

Apple Ile signal named (0 is equivalent to the signal called ¢2 in the
hardware manual. (It isn’t identical: it's a few nanoseconds early.)

Chapter 7: Hardware Implementation




Table 7-5.

65C02 Timing Signal Descriptions

Signal
Name

14M
VIDTM

Q3

0
ol

Figure 7-1.

Description
Master oscillator, 14.318 MHz; also 80-column dot clock

Intermediate timing signal and 40-column dot clock

Intermediate timing signal, 2.045 MHz with asymmetrical duty

cycle
Phase 0 of 65C02 clock, 1.0227 MHz; complement of ¢1
Phase 1 of 66C02 clock, 1.0227 MHz; complement of ¢0

65C02 Timing Signals

v LT LT L

"l | | CPU Phase

¢1—'—J !

ADDR
From 65C02

DATA From

DATA to 65C02 (Read)

280 ns

210 ns

490 ns =

I

— |~—140 ns (Max.) 30 ns (Min.)—

-
X y
i,._
¥

60 ns (Min.)
100 ns (Max.) ‘—l E<_ L

65C02 (Write) p 4

The 65C02 Microprocessor

163




The operations of the 65C02 are related to the clock signals in a simple way:
address during ¢1, data during ¢0. The 65C02 puts an address on the
address bus during ¢1. This address is valid not later than 140 nanoseconds
after ¢1 goes high and remains valid through all of ¢0. The 65C02 reads or
writes data during ¢0. If the 65C02 is writing, the read /write signal is low
during ¢0 and the 65C02 puts data on the data bus. The data is valid not
later than 75 nanoseconds after ¢0 goes high. If the 65C02 is reading, the
read/write signal remains high. Data on the data bus must be valid no later
than 50 nanoseconds before the end of ¢0.

The Custom Integrated Circuits

Most of the circuitry that controls memory and I/0 addressing in the

Apple Ile is in three custom integrated circuits called the Memory
Management Unit (MMU), the Input/Output Unit (IOU), and the
Programmed Array Logic device (PAL). The soft switches used for
controlling the various I/0 and addressing modes of the Apple Ile are
addressable flags inside the MMU and the I0U. The functions of these two
devices are not as independent as their names suggest; working together,
they generate all of the addressing signals. For example, the MMU generates
the address signals for the CPU, while the IOU generates similar address
signals for the video display.

The Memory Management Unit

The circuitry inside the MMU implements these soft switches, which are
described in the indicated chapters in this manual:

o Page 2 display (PAGE2): Chapter 2

o High resolution mode (HIRES): Chapter 2

o Store to 80-column card (80STORE): Chapter 2

o Select bank 2: Chapter 4

o Enable bank-switched RAM: Chapter 4

o Read auxiliary memory (RAMRD): Chapter 4

o Write auxiliary memory (RAMWRT): Chapter 4

o Auxiliary stack and zero page (ALTZP): Chapter 4

o Slot ROM for connector #3 (SLOTC3ROM): Chapter 6
o Slot ROM in I/0 space (SLOTCXROM): Chapter 6

Chapter 7: Hardware Implementation




The 64K dynamic RAMs used in the Apple Ile use a multiplexed address, as
described later in this chapter in the section “Dynamic-RAM Timing.” The
MMU generates this multiplexed address for memory reading and writing
by the 66C02 CPU. The pinouts and signal descriptions of the MMU are
shown in Figure 7-2 and Table 7-6.

Figure 7-2. The MMU Pinouts Table 7-6. The MMU Signal Descriptions
Pin
GND | 1 - 40 | Al Number  Name Description
Al 2 39 | A2
@0 | 3 38 | A3 1 GND Power and signal common
Q3 B 37T | A4 2 A0 65C02 address input
PRAS" | & 36 | Ab 3 @0 Clock phase 0 input
RAO | 6 3% | A6 4 Q3 Timing signal input
RAL |7 3 | AT 5 PRAS’ Memory row-address strobe
L3I = | 6-13 RAO-RAT Multiplexed address output
RA4 | 10 a1 | Al0 14 R/ V‘-:’ 650'(}2? read-.wnte control'sgnal
RAS | 11 20 | All 15 INH Inhibits main memory (tied to +5 V)
RAG | 12 29 | A12 16 DMA’ Controls data bus for DMA transfers
RAT | 13 28 | A13 17 EN80” Enables auxiliary RAM
R/W' | 14 27 | Al4 18 KBD’ Enables keyboard data bits 0-6
INH" | 15 26 | Alb 19 ROMEN2’ Enables ROM (tied to ROMEN1")
DMA’ | 16 2 | +5V 20 ROMENY’ Enables ROM (tied to ROMEN2)
Eggg %g 2; gﬁw 21 MD7 State of MMU flags on data bus bit 7
RMENZ |19 2 RWS 2 Ry BuableomanRAM
ROMESL" | & dh | Mor 24 Cxxx Enables peripheral-card memory
25 +5V Power
26-40 Al5-Al 65C02 address input
The Custom Integrated Circuits 165




166

The Input/Output Unit
]

The circuitry inside the Input,/Output Unit (IOU) implements the following
soft switches, all described in Chapter & in this manual:

o Page 2 display (PAGE2)

o High resolution mode (HIRES)

Text mode (TEXT)

o Mixed mode (MIXED)

o 80-column display (80COL)

o Text display mode select (ALTCHAR)
o Any-key-down

o Annunciators

Vertical blanking (VBL)

The 64K dynamic RAMs used in the Apple Ile require a multiplexed
address, as described later in this chapter in the section “Dynamic-RAM
Timing.” The I0U generates this multiplexed address for the data transfers
required for display and memory refresh during clock phase 1. The way this
address is generated is described later in this chapter in the section “Display
Address Mapping.” The pinouts and signal descriptions for the IOU are
shown in Figure 7-3 and Table 7-7.

a

=]

Chapter 7: Hardware Implementation




. Figure 7-3. The 10U Pinouts

Table 7-7. The 10U Signal Descriptions

B
SEGA
. SEGB
V0
SOVID/
. SPKR
MD7
ANO
AN3
R/W
l RESET’
RAO
RAL
RA2

GR

CASS0

. ANI
AN2

(n.c.)

RA3

Ny

1 40
2 39
3 38
4 37
b 36
6 35
7 34
8 33
9 32
10 31
11 30
12 29
13 28
14 27
15 26
16 26
17 24
18 23
19 22
20 21

HO
SYNC’
WNDW/
CLRGAT’
RAL0
RAY
VID6
VID7
KSTRB
AKD
Clxx
Ab

+5V

Q3

#0
PRAS’
RAT
RA6
RA5
RA4

Pin
Number

1
2
3

The Custom Integrated Circuits

Name

GND
GR
SEGA

SEGB

VC

80VID
CASSO
SPKR
MD7
ANO-AN3
R/W’
RESET”

RAQ-RAT
PRAS’

ol

Q3

+5V

A6

COxx

AKD
KSTRB
VIDD7,VIDD6
RAY’ RA10"
CLRGAT’
WNDW/
SYNC’

HO

Description

Power and signal common

Graphics mode enable

In text mode, works with VC (see pin 5) and SEGB
to determine character row address

In text mode, works with VC (see pin 5) and SEGA,;
in graphics mode, selects high-resolution when low,
low-resolution when high

Display vertical counter bit: in text mode, SEGA,
SEGB and VC determine which of the eight rows of
a character's dot pattern to display; in
low-resolution, selects upper or lower block defined
by a byte.

80-column video enable

Cassette output signal

Speaker output signal

Internal I0U flags for data bus (bit 7)3
Annunciator outputs

65C02 read-write control signal

Power on and reset output

Nothing is connected to this pin.

Video refresh multiplexed RAM address (phase 1)
Row-address strobe (phase 0)

Master clock phase 0

Intermediate timing signal

Power

Address bit 6 from 65C02

1/0 address enable

Any-key-down signal

Keyboard strobe signal

Video display data bits

Video display control bits

Color-burst gate (enable)

Display blanking signal

Display synchronization signal

Display horizontal timing signal (low bit of
character counter)




The PAL Device

=]

A Programmed Array Logic device, type PAL 16R8, generates several timing
and control signals in the Apple Ile. These signals are listed in Table 7-8.
The PAL pinouts are given in Figure 7-4.

Figure 7-4. The PAL Pinouts Table 7-8. The PAL Signal Descriptions
Pin
4M | 1 o 20 | +5V Number  Name Description
™ 2 19 | PRAS
358M | 3 18 | (nc) 1 14M 14.31818 MHz master timing signal
HO 4 17 | PCAS’ 2 ™ 7.16%09 MHz timing signal
VID7 | 6 16 | @3 3 3.68M 3.579545 MHz timing signal
SEGB | 6 15 | ¢0 4 HO Horizontal video timing signal
GR 7 41 ¢l 5 VID7 Video data bit 7
L 2 | 6 SEGB Video timing signal
GND | 10 11 | ENTMG 7 GR Video display graphics-mode enable

8 RAMEN’ RAM enable (CAS enable)
9 80VID’ Enable 80-column display mode
10 GND Power and signal common
11 ENTMG Enable master timing
12 LDPS’ Video shift-register load enable
13 VIDT™™ Video dot clock, 7 or 14 MHz
14 ol Phase 1 system clock
15 @0 Phase 0 system clock
16 Q3 Intermediate timing and strobe signal
17 PCAS’ RAM column-address strobe
18 N.C. (This pin is not used.)
19 PRAS’ RAM row-address strobe
20 +5V Power

Memory Addressing

O e T W R e R e e e s ey
The Apple Ile’s microprocessor can address 65,536 locations. The Apple Ile
uses this entire address space, and then some: some areas in memory are
used for more than one function. The following sections describe the
memory devices used in the Apple Ile and the way they are addressed.
Input and output also use portions of the memory address space; refer to the
section “Peripheral-Card Memory Spaces” in Chapter 6 for information.

168 Chapter 7: Hardware Implementation




Figure 7-5. The 2364 ROM Pinouts

W 0o =3 T O b D DO —

-/

+bV
+5V
+5V
A8
A9
All
ROMENx"
Al0
CE’
MD7
MD6
MD5
MD4
MD3

AT
A6
Ab
Ad
A3

GND

e
B B woo -1 o i b

NS

Figure 7-7. The 2333 ROM Pinouts

VID4
VID3
VID2
VID1
VIDO
VC
SEGB
SEGA
DO

D1

D2
GND

N
1 24 | +5V
2 23 | VID5
3 22 | RA9
4 21 | GR
5 20 | WNDW
6 19 | RAID
7 18 | ENVID’
8 17 | D7
9 16 | D6
10 16 | Db
11 14 | D4
12 13 | D3

ROM Addressing

I T N P
In the Apple Ile, the following programs are permanently stored in two type
2364 8K by 7-bit ROMs (read-only memory):

o Applesoft editor and interpreter
o System Monitor

o 80-column display firmware

o self-test routines

These two ROMs are enabled by two signals called ROMEN1 and ROMENZ.
The ROM enabled by ROMEN1, sometimes called the Diagnostics ROM,
occupies the memory address space from $C100 to $DFFF. The address
space from $C300 to $C3FF and from $C800 to $CFFF contains the
80-column display firmware. Those address spaces are normally assigned to
ROM on a peripheral card in slot 3; for a discussion of the way the
80-column firmware overrides the peripheral card, see the section “Other
Uses of I/0 Memory Space” in Chapter 6. The pinouts of the 2364 ROMs are
given in Figure 7-5.

Two other portions of the Diagnostics ROM, addressed from $C100 to $C2FF
and from $C400 to $CTFF, contain the built-in self-test routines. These
address spaces are normally assigned to the peripheral cards; when the
self-test programs are running, the peripheral cards are disabled.

The remainder of the Diagnostics ROM, addressed from $D000 to $DFFF,
contains part of the Applesoft BASIC interpreter.

The ROM enabled by ROMENZ, sometimes called the Monitor ROM,
occupies the memory address space from $E000 to $FFFF. This ROM
contains the rest of the Applesoft interpreter, in the address space from
$E000 to $EFFF, and the Monitor subroutines, from $F000 to $FFFF.

The other ROMs in the Apple Ile are a type 2316 ROM used for the keyboard
character decoder and a type 2333 ROM used for character sets for the video
display. This 2333 ROM is rather large because it includes a section of
straight-through bit-mapping for the graphics modes. This way, graphics
display video can pass through the same circuits as text without additional
switching circuitry. The 2316's pinout is given in Figure 7-6, and the 2333s
pinout is given in Figure 7-7.

Memory Addressing 169



Figure 7-8. The 64K RAM Pinouts RAM Addressing

(R E——— e
' The RAM (programmable) memory in the Apple Ile is used both for program
16 | GND and data storage and for the video display. The areas in RAM that are used
}2 ACA’?)SX for the display are accessed both by the 65C02 microprocessor and by the
13 | RA1 video display circuits. In some computers, this dual access results in
RA4 addressing conflicts (cycle stealing) that can cause temporary dropouts in
11 | RA3 the video display. This problem does not occur in the Apple Ile, thanks to

18 Eﬁg the way the microprocessor and the video circuits share the memory.

+6V
MDx
R/W*
RAS’
RA7
RAS
RAG
+5V

00 =3 TN O W OO DO —
—
[a]

The memory circuits in the Apple Ile take advantage of the two-phase
system clock described earlier in this chapter in the section “65C02 Timing”
to interleave the microprocessor memory accesses and the display memory
accesses so that they never interfere with each other. The microprocessor
reads or writes to RAM only during ¢0, and the display circuits read data
only during ¢1.

Dynamic-RAM Refreshment

The image on a video display is not permanent; it fades rapidly and must be
refreshed periodically. To refresh the video display, the Apple Ile reads the
data in the active display page and sends it to the display. To prevent
visible flicker in the display, and to conform to standard practice for
broadcast video, the Apple Ile refreshes the display sixty times per second.

The dynamic RAM devices used in the Apple [le also need a kind of refresh,
because the data is stored in the form of electric charges which diminish
with time and must be replenished every so often. The Apple Ile is designed
so that refreshing the display also refreshes the dynamic RAMs. The next
few paragraphs explain how this is done.

The job of refreshing the dynamic RAM devices is minimized by the
structure of the devices themselves. The individual data cells in each RAM
device are arranged in a rectangular array of rows and columns. When the
device is addressed, the part of the address that specifies a row is presented
first, followed by the address of the column. Splitting information into parts
that follow each other in time is called multiplexing, Since only half of the
address is needed at one time, multiplexing the address reduces the number
of pins needed for connecting the RAMs.

Different manufacturers’ 64K RAMs have cell arrays of either 128 rows by
512 columns or 256 rows by 256 columns. Only the row portion of the
address is used in refreshing the RAMs.

170 Chapter 7: Hardware Implementation




Now consider how the display is refreshed. As described later in this
chapter in the section “The Video Counters,” the display circuitry generates
a sequence of 8,192 memory addresses in high-resolution mode; in text and
low-resolution modes, this sequence is the 1,024 display-page addresses
repeated eight times. The display address cycles through this sequence

60 times a second, or once every 17 milliseconds. The way the low-order
address lines are assigned to the RAMs, the row address cycles through all
256 possible values once every two milliseconds. (See Figure 7-9.) This
more than satisfies the refresh requirements of the dynamic RAMs.

Table 7-9. RAM Address Multiplexing

Mux'd Row Column
Address Address Address
RAO AD A9

RAl Al AB

RAZ A2 Al0
RA3 A3 All
RA4 A4 Al2
RA5 A Al3
RAG AT Al4
RA7 A8 Al

Dynamic-RAM Timing

The Apple [le's microprocessor clock runs at a moderate speed, about
1.023 MHz, but the interleaving of CPU and display cycles means that the
RAM is being accessed at a 2 MHz rate, or a cycle time of just under

500 nanoseconds. Data for the CPU is strobed by the falling edge of ¢0, and
display data is strobed by the falling edge of ¢1, as shown in Figure 7-9.

Memory Addressing 171




Figure 7-9. RAM Timing Signals

v LT LT L LML L
B — [ el ™
# | CPUPhase L.
¢l —— | Video Phase | [
g el B [ |1 11
oy — | L— L
|
¢

MDO-MD7 < )—

Chapter 7: Hardware Implementation




The RAM timing looks complicated because the RAM address is
multiplexed, as described in the previous section. The MMU takes care of
multiplexing the address for the CPU cyele, and the IOU performs the same
function for the display cycle. The multiplexed address is sent to the RAM
ICs over the lines labelled RAO-RA7. Along with the other timing signals, the
PAL device generates two signals that control the RAM addressing:
row-address strobe (RAS) and column-address strobe (CAS).

Table 7-10. RAM Timing Signal Descriptions

Signal Name Description

o0 Clock phase ( (CPU phase)

¢l Clock phase 1 (display phase)

RAS Row-address strobe

CAS Column-address strobe

Q3 Alternate RAM/column-address strobe
RAO-RAT Multiplexed address bus

MDO0-MD7 Internal data bus

The Video Display

15 VIO S e i T T W s Y B~ S e s T i T |
The Apple Ile produces a video signal that creates a display on a standard
video monitor or, if you add an RF modulator, on a black-and-white or color
television set. The video signal is a composite made up of the data that is
being displayed plus the horizontal and vertical synchronization signals that
the video monitor uses to arrange the lines of display data on the screen.

Video Standards: Apple Ile's manufactured for sale in the U.S.
generate a video signal that is compatible with the standards set by the
NTSC (National Television Standards Committee). Apple Ile’s
manufactured for sale in European countries generate video that is
compatible with the standard used there, which is called P.A.L. (for
phase alternating lines). This manual describes only the NTSC version of
the video circuits.

The Video Display 173




The display portion of the video signal is a time-varying voltage generated
from a stream of data bits, where a 1 corresponds to a voltage that generates
a bright dot, and a 0 to a dark dot. The display bit stream is generated in
bursts that correspond to the horizontal lines of dots on the video screen.
The signal named WNDW" is low during these bursts.

During the time intervals between bursts of data, nothing is displayed on
the screen. During these intervals, called the blanking intervals, the display
is blank and the WNDW" signal is high. The synchronization signals, called
sync for short, are produced by making the signal named SYNC’ low during
portions of the blanking intervals. The sync pulses are at a voltage
equivalent to blacker-than-black video and don't show on the screen.

The Video Counters

The address and timing signals that control the generation of the video
display are all derived from a chain of counters inside the I0U. Only a few
of these counter signals are accessible from outside the IOU, but they are all
important in understanding the operation of the display generation process,
particularly the display memory addressing described in the next section.

The horizontal counter is made up of seven stages: HO, H1, H2, H3, H4, H5,
and HPE’. The input to the horizontal counter is the 1 MHz signal that
controls the reading of data being displayed. The complete cycle of the
horizontal counter consists of 65 states. The six bits H0 through H5 count
normally from 0 to 63, then start over at 0. Whenever this happens, HPE’
forces another count with HO through Hb held at zero, thus extending the
total count to 65.

The I0U uses the forty horizontal count values from 25 through 64 in
generating the low-order part of the display data address, as described later
in this chapter in the section “Display Address Mapping.” The IOU uses the
count values from ( to 24 to generate the horizontal blanking, the horizontal
sync pulse, and the color-burst gate.

Chapter 7: Hardware Implementation




When the horizontal count gets to 65, it signals the end of a line by
triggering the vertical counter. The vertical counter has nine stages: VA,
VB, VC, V0, V1, V2, V3, V4, and V5. When the vertical count reaches 262,
the IOU resets it and starts counting again from zero. Only the first 192
scanning lines are actually displayed; the IOU uses the vertical counts from
192 to 261 to generate the vertical blanking and syne pulse. Nothing is
displayed during the vertical blanking interval. (The vertical line count is
262 rather than the standard 262.5 because, unlike normal television, the
Apple Ile’s video display is not interlaced.)

Smooth Animation: Animation displays sometimes have an erratic
flicker caused by changing the display data at the same time it is being
displayed. You can avoid this on the Apple Ile by reading the
vertical-blanking signal (VBL) at location $C019 and changing display
data while VBL is low only (data value less than 128).

Display Memory Addressing
EEETEETT e e ==y

As described in Chapter 2 in the section “Addressing Display Pages
Directly,” data bytes are not stored in memory in the same sequence in
which they appear on the display. You can get an idea of the way the
display data is stored by using the Monitor to set the display to graphics
mode, then storing data starting at the beginning of the display page at
hexadecimal $400 and watching the effect on the display. If you do this, you
should use the graphics display instead of text to avoid confusion: the text
display is also used for Monitor input and output.

If you want your program to display data by storing it directly into the
display memory, you must first transform the display coordinates into the
appropriate memory addresses, as shown in the section “Video Display
Pages” in Chapter 2. The descriptions that follow will help you understand
how this address transformation is done and why it is necessary. They will
not (alas!) eliminate that necessity.

The address transformation that folds three rows of forty display bytes into
128 contiguous memory locations is the same for all display modes, so it is
described first, The differences among the different display modes are then
described in the section “Video Display Modes.”

The Video Display 175




The requirements of the RAM refreshing
are discussed earlier in this chapter in the
section “Dynamic-RAM Refreshment.”

Display Address Mapping

Consider the simplest display on the Apple Ile, the 40-column text mode. To
address forty columns requires six bits, and to address twenty-four rows
requires another five bits, for a total of eleven address bits. Addressing the
display this way would involve 2048 (2 to the eleventh power) bytes of
memory to display a mere 960 characters. The 80-column text mode would
require 4096 bytes to display 1920 characters. The leftover chunks of
memory that were not displayed could be used for storing other data, but
not easily, because they would not be contiguous.

Instead of using the horizontal and vertical counts to address memory
directly, the circuitry inside the I0U transforms them into the new address
signals described below. The transformed display address must meet the
following criteria:

o Map the 960 bytes of 40-column text into only 1024 bytes.
o Scan the low-order address to refresh the dynamic RAMs.
o Continue to refresh the RAMs during video blanking,

The transformation involves only horizontal counts H3, H4, and H5, and
vertical counts V3 and V4. Vertical count bits VA, VB, and VC address the
lines making up the characters, and are not involved in the address
transformation. The remaining low-order count bits, H0, H1, H2, V0, V1, and
V2 are used directly, and are not involved in the transformation.

The I0U performs an addition that reduces the five significant count bits to
four new signals called S0, S1, S2, and S3, where S stands for sum.

Figure 7-10 is a diagram showing the addition in binary form, with V3
appearing as the carry in and Hb appearing as its complement H5".

A constant value of 1 appears as the low-order bit of the addend. The carry
bit generated with the sum is not used.

Table 7-11. Display Address Transformation

V3 Carry in
H5’ V3 H4 H3 Augend
V4 H5 V4 1 Addend
S3 S2 51 S0 Sum

Chapter 7: Hardware Implementation




If this transformation seems terribly obscure, try it with actual values. For
example, for the upper-left corner of the display, the vertical count is 0 and
the horizontal count is 24: HO, H1, H2, and H5 are 0's and H3, and H4 are 1’s.
The value of the sum is (, so the memory location for the first character on
the display is the first location in the display page, as you might expect.

Horizontal bits HO, H1, and H2 and sum bits S0, S1, and S2 make up the
transformed horizontal address (A( through A6 in Table 7-12). As the
horizontal count increases from 24 to 63, the value of the sum

(S3 52 81 S0) increases from 0 to 4 and the transformed address goes from 0
to 39, relative to the beginning of the display page.

The low-order three bits of the vertical row counter are V0, V1, and V2.
These bits control address bits A7, A8, and A9, as shown in Table 7-12, so
that rows 0 through 7 start on 127-byte boundaries. When the vertical row
counter reaches 8, then V0, V1, and V2 are 0 again, and V3 changes to 1. If
you do the addition in Table 7-11 with H equal to 24 (the horizontal count
for the first column displayed) and V equal to 8, the sum is 5 and the
horizontal address is 40: the first character in row 8 is stored in the memory
location 40 bytes from the beginning of the display page.

Figure 7-10. 40-Column Text Display Memory

Memory locations marked with an asterisk (*) are reserved for use by peripheral
1/0 firmware: refer to the section “Peripheral-Card RAM Space” in Chapter 6.

- 128 Bytes
40 Bytes——s- | #——A4() Bytes——s| +—4( Bytes—=s Ey_fe:
$400 row 0 row 8 row 16 *
$480 row 1 row 9 row 17 !
$500 row 2 row 10 row 18 £
$580 row 3 row 11 row 19 z
$600 row 4 row 12 row 20 *
$680 row 5 row 13 row 21 %
$700 row 6 : row 14 row 22 G
$780 row 7 row 15 row 23 1
The Video Display 177




178

Figure 7-10 shows how groups of three forty-character rows are stored in
blocks of 120 contiguous bytes starting on 127-byte address boundaries.
This diagram is another way of describing the display mapping shown in
Figure 2-5. Notice that the three rows in each block of 120 bytes are not
adjacent on the display.

Table 7-12 shows how the signals from the video counters are assigned to
the address lines. HO, H1, and H2 are horizontal-count bits, and V0, V1, and
V2 are vertical-count bits. S0, S1, 52 and S3 are the folded address bits
described above. Address bits marked with asterisks (*) are different for
different modes: see Table 7-13 and the four subsections under the section
“Video Display Modes.” :

Table 7-12. Display Memory Addressing

Memory Display Memory Display
Address Bit Address Bit Address Bit Address Bit
A0 HO A8 V1

Al H1 AY V2

A2 H2 AlQ "

A3 SO All i

A4 S1 Al2 i

A5 32 Al3 *

A6 S3 Al4 e

AT VO Al5 GND

* Por these address bits, see text and Table 7-13.

Table 7-13. Memory Address Bits for Display Modes

. means logical AND; “means logical NOT.

Display Modes
Address Text and High-Resolution and
Bit Low-Resolution Double-High-Resolution
A0 80STORE+PAGE2’ VA
All 80STORE’.PAGE2 VB
Al2 0 VG
Al3 0 80STORE+PAGE2"
Al4 0 80STORE’.PAGEZ

Chapter 7: Hardware Implementation




Video Display Modes
R Rl | St

The different display modes all use the address-mapping scheme described
in the previous section, but they use different-sized memory areas in
different locations. The next four sections describe the addressing schemes
and the methods of generating the actual video signals for the different
display modes.

Text Displays

The text and low-resolution graphics pages begin at memory locations
$0400 and $0800. Table 7-13 shows how the display-mode signals control
the address bits to produce these addresses. Address bits A10 and Al are
controlled by the settings of PG2 and 80STORE, which are set by the
display-page and 80-column-video soft switches. Address bits A12, A13, and
Al4 are set to 0. Notice that 80STORE active inhibits PG2: there is only one
display page in 80-column mode.

The bit patterns used for generating the different characters are stored in a
32K ROM. The low-order six bits of each data byte reach the character
generator ROM directly, via the video data bus VID0-VID5. The two
high-order bits are modified by the I0U to select between the primary and
alternate character sets and are sent to the character generator ROM on
lines RA9 and RA10.

The data for each row of characters are read eight times, once for each of
the eight lines of dots making up the row of characters. The data bits are
sent to the character generator ROM along with VA, VB, and VC, the
low-order bits from the vertical counter. For each character being displayed,
the character generator ROM puts out one of eight stored bit patterns
selected by the three-bit number made up of VA, VB, and VC.

The bit patterns from the character generator ROM are loaded into the
74166 parallel-to-serial shift register and output as a serial bit stream that
goes to the video output circuit. The shift register is controlled by signals
named LDPS’ (for lead parallel-to-serial shifter) and VID7M (for video

7 MHz). In 40-column mode, LDPS” strobes the output of the character
generator ROM into the shift register once each microsecond, and bits are
sent to the screen at a T MHz rate.

The Video Display 179




The addressing for the 80-colurnn display is exactly the same as for the
40-column display: the 40 columns of display memory on the 80-column
card are addressed in parallel with the 40 columns in main memory. The
data from these two memories reach the video data bus (lines VID0-VIDT)
via separate T4LS374 three-state buffers. These buffers are loaded
simultaneously, but their outputs are sent to the character generator ROM
alternately by ¢0 and ¢1. In 80-column mode, LDPS’ loads data from the
character generator ROM into the shift register twice during each
microsecond, once during 0 and once during ¢1, and bits are sent to the
screen at a 14 MHz rate. Figures 7-11a and 7-11b show the video timing
signals.

Figure 7-11a. 7 MHz Video Timing Signals

we [UUUUUUUUUUUUUUUUUUurnrnuuruuuy

|
w Ty

% @G0 Phase é [ 1
81 _ | Video Phase | | 1 |
miass XX
VIDEO LATCH X P, 4
LDPS’ and EN80’
L)
VIDEO BUS Into CHARGEN b 4 X
OUTPUT BUS Into SPI (Shift Register) X X
SPI Serial Output (VIDTM and 14M) pEpEpEnEnEnEREn
180 Chapter 7: Hardware Implementation




Figure 7-11b. 14 MHz Video Timing Signals

we (UL U UUUUUUrUr Uiy

|

& = P—CrU Prase & [ 1
| |
1 __} Video Phase | J| (]} [
|
DATA BUS
| ‘
VIDEO LATCH X XD
|
ALTERNATE BUSX_ALT, X
|
80 LATCH X ALT, ALT,
|
%JI?NIIJSSO” Always On) I U U L[_
| l
VIDEO BUS Into CHARGEN e 4 D, XA, XD,
OUTPUT BUS Into SPI (Shift Register) l)( D, l)( T, XD,

SPI Serial Output (14M Clock)

The Video Display

181



Low-Resolution Display

In the graphics modes, VA and VB are not used by the character generator,
so the 10U uses lines SEGA and SEGB to transmit HO and HIRES’, as shown
in Table 7-14.

Table 7-14. Character-Generator Control Signals

Display

Mode SEGA SEGB SEGC
Text VA VB VC
Graphics HO HIRES’ VG

The low-resolution graphics display uses VC to divide the eight display lines
corresponding to a row of characters into two groups of four lines each.
Each row of data bytes is addressed eight times, the same as in text mode,
but each byte is interpreted as two nibbles. Each nibble selects one of 16
colors. During the upper four of the eight display lines, VC is low and the
low-order nibble determines the color. During the lower four display lines,
VC is high and the high-order nibble determines the color.

The bit patterns that produce the low-resolution colors are read from the
character-generator ROM in the same way the bit patterns for characters
are produced in text mode, The 74166 parallel-to-serial shift register
converts the bit patterns to a serial bit stream for the video circuits.

The video signal generated by the Apple Ile includes a short burst of

3.58 MHz signal that is used by an NTSC color monitor or color TV set to
generate a reference 3.58 MHz color signal. The Apple Ile's video signal
produces color by interacting with this 3.58 MHz signal inside the monitor or
TV set. Different bit patterns produce different colors by changing the duty
cycles and delays of the bit stream relative to the 3.58 MHz color signal. To
produce the small delays required for so many different colors, the shift
register runs at 14 MHz and shifts out 14 bits during each cycle of the 1-MHz
data clock. To generate a stream of fourteen bits from each eight-bit pattern
read from the ROM, the output of the shift register is connected back to the
register’s serial input to repeat the same eight bits; the last two bits are
ignored the second time around.

Chapter 7: Hardware Implementation




Each bit pattern is output for the same amount of time as a character: .98
microseconds. Because that is exactly enough time for three and a half
cycles of the 3.58 MHz color signal, the phase relationship between the bit
patterns and the signal changes by a half cycle for each successive pattern.
To compensate for this, the character generator ROM puts out one of two
different bit patterns for each nibble, depending on the state of H0, the
low-order bit of the horizontal counter.

High-Resolution Display

The high-resolution graphics pages begin at memory locations $2000 and
$4000 (decimal 8192 and 16384). These page addresses are selected by
address bits A13 and Al14. In high-resolution mode, these address bits are
controlled by PG2 and 80STORE, the signals controlled by the display-page
(PAGE2) and 80-column-video (80COL) soft switches. As in text mode,
80STORE inhibits addressing of the second page because there is only one
page of 80-column text available for mixed mode.

In high-resolution graphics mode, the display data are still stored in blocks
like the one shown in Figure 7-10, but there are eight of these blocks. As
Table 7-12 and Table 7-13 show, vertical counts VA, VB, and VC are used
for address bits A10, A11, and A12, which address eight blocks of 1024 bytes
each. Remember that in the display, VA, VB, and VC count adjacent
horizontal lines in groups of eight. This addressing scheme maps each of
those lines into a different 1024-hyte block. It might help to think of it as a
kind of eight-way multiplexer: it's as if eight text displays were combined to
produce a single high-resolution display, with each text display providing
one line of dots in turn, instead of a row of characters.

The high-resolution bit patterns are produced by the character-generator
ROM. In this mode, the bit patterns simply reproduce the eight bits of
display data. The low-order six bits of data reach the ROM via the video
data bus VID0-VID5. The 10U sends the other two data bits to the ROM via
RA9 and RA10.

The high-resolution colors described in Chapter 2 are produced by the
interaction between the video signal the bit patterns generate and the

3.58 MHz color signal generated inside the monitor or TV set. The
high-resolution bit patterns are always shifted out at 7T MHz, so each dot
corresponds to a half-cycle of the 3.58 MHz color signal. Any part of the
video signal that produces a single white dot between two black dots, or
vice versa, is effectively a short burst of 3.58 MHz and is therefore displayed
as color. In other words, a bit pattern consisting of alternating 1's and 0's

The Video Display 183




184

gets displayed as a line of color. The high-resolution graphics subroutines
produce the appropriate bit patterns by masking the data bits with
alternating 1's and 0's.

To produce different colors, the bit patterns must have different phase
relationships to the 3.58 MHz color signal. If alternating 1's and s produce
a certain color, say green, then reversing the pattern to 0's and 1's will
produce the complementary color, purple. As in the low-resolution mode,
each bit pattern corresponds to three and a half cycles of the color signal, so
the phase relationship between the data bits and the color signal changes by
a half cycle for each successive byte of data. Here, however, the bit patterns
produced by the hardware are the same for adjacent bytes; the color
compensation is performed by the high-resolution software, which uses
different color masks for data being displayed in even and odd columns.

To produce other colors, bit patterns must have other timing relationships
to the 3.568 MHz color signal. In high-resolution mode, the Apple Ile produces
two more colors by delaying the output of the shift register by half a dot

(70 ns), depending on the high-order bit of the data byte being displayed.
(The high-order bit doesn’t actually get displayed as a dot, because at 7 MHz
there is only time to shift out seven of the eight bits.)

As each byte of data is sent from the character generator to the shift
register, high-order data bit D7 is also sent to the PAL device. If D7 is off, the
PAL device transmits shift-register timing signals LDPS* and VIDTM
normally. If D7 is on, the PAL device delays LDPS’ and VID7M by 70
nanoseconds, the time corresponding to half a dot. The bit pattern that
formerly produced green now produces orange; the pattern for purple now
produces blue.

A Note About Timing: For 80-column text, the shift register is clocked
at twice normal speed. When 80-column text is used with graphics in
mixed mode, the PAL device controls shift-register timing signals LDPS’
and VIDTM so that the graphics portion of the display works correctly
even when the text window is in 80-column mode.

Chapter 7: Hardware Implementation




Double-High-Resolution Display

Double-high-resolution graphics mode displays two bytes in the time
normally required for one, but uses high-resolution graphics Page 1 in both
main and auxiliary memory instead of text or low-resolution Page 1.

Note: There is a second pair of pages, high-resolution Page 2, which can
be used to display a second double-high-resolution page.

Double-high-resolution graphics mode displays each pair of data bytes as 14
adjacent dots, seven from each byte. The high-order bit (color-select bit) of
each byte is ignored. The auxiliary-memory byte is displayed first, so data
from auxiliary memory appears in columns 0-6, 14-20, and so on, up to
columns 547-552. Data from main memory appears in columns 7-13, 21-27,
and so on, up to 553-559.

As in 80-column text, there are twice as many dots across the display
screen, so the dots are only half as wide. On a TV set or low-bandwidth
monitor (less than 14 MHz), single dots will be dimmer than normal.

Note: Except for some expensive RGB-type monitors, any video monitor
with a bandwidth as high as 14 MHz will be a monochrome monitor.
Monochrome means one color: a monochrome video monitor can have a
screen color of white, green, orange, or any other single color.

The main memory and auxiliary memory are connected to the address bus
in parallel, so both are activated during the display cycle. The rising edge of
#0 clocks a byte of main memory data into the video latch, and a byte of
auxiliary memory data into the 80 latch.

Phi 1 (¢1) enables output from the (auxiliary) 80 latch, and ¢0 enables
output from the (main) video latch. Qutput from both latches goes to
CHARGEN, where GR and SEGB’ select high-resolution graphics. LDPS
operates at 2 MHz in this mode, alternately gating the auxiliary byte and
main byte into the parallel-to-serial shift register. VIDTM is active (kept
true) for double-high-resolution display mode, so when it is ANDed with
14M, the result is still 14M. The 14M serial clock signal gate shift register
then outputs to VID, the video display hybrid circuit, for output to the
display device,

The Video Display 185




Video Output Signals
h

The stream of video data generated by the display circuits described above

goes to a linear summing circuit built around transistor Q1 where it is mixed

with the sync signals and the color burst. Resistors R8, R5, R7, R10, R13,

and R15 adjust the signals to the proper amplitudes, and a tank circuit (L3

and C32) resonant at 3.58 MHz conditions the color burst.

The resulting video signal is an NTSC-compatible composite-video signal
that can be displayed on a standard video monitor. The signal is similar to
the EIA (Electronic Industries Association) standard positive composite
video (see Table 7-15). This signal is available in two places in the Apple Ile:

o At the phono jack on the back of the Apple Ile. The sleeve of this jack is
connected to ground and the tip is connected to the video output through
a resistor network that attenuates it to about 1 volt and matches its
impedance to 75 ohms.

0 At the internal video connector on the Apple Ile circuit board near the
RCA jack, J13 in Figure 7-13c. It is made up of four Molex-type pins,
0.25 inches tall, on 0.10 inch centers. This connector carries the video
signal, ground, and two power supplies, as shown in Table 7-15.

Table 7-15. Internal Video Connector Signals

Note: Pin 1 is the pin closest to the keyboard; pin 4 is at the back.

Pin Name Description
1 GROUND System common ground
2 VIDEO NTSC-compatible positive composite video. White

level is about 2.0 volts, black level is about 0.75
volts, and sync level is 0.0 volts. This output is not
protected against short-circuits.

3 -5V -5 volt power supply
4 +12V +12 volt power supply
186 Chapter 7: Hardware Implementation




|

Built-in 1/O Circuits

e e s s s s sr s RTs s Sae s
The use of the Apple Ile’s built-in [ /0 features is described in Chapter 2.
This section describes the hardware implementation of all of those features
except the video display described in the previous sections.

The I0U (Input/Output Unit) directly generates the output signals for the
speaker, the cassette interface, and the annunciators. The other I/0
features are handled by smaller ICs, as described later in this section.

The addresses of the built-in /0 features are described in Chapter 2 and
listed in Table 2-2, Table 2-11, and Table 2-12. All of the built-in 1/0
features except the displays use memory locations between $C000 and
$C070 (decimal 49152 and 49264). The /0 address decoding is performed
by three ICs: a 74LS138, a 74LS154, and a T4L.S251.

The 7418138 decodes address lines A8, A9, A10, and A1l to select address
pages on 256-byte boundaries starting at SC000 (decimal 49152). When it
detects addresses between $C000 and $COFF, it enables the 10U and the
7418154, The 74LS154 in turn decodes address lines A4, Ab, A6, and AT to
select 16-byte address areas between $C000 and $COFF. Addresses between
$C060 and $CO6F enable the 74LS251 that multiplexes the hand control
switches and paddles; addresses between $C070 and $COTF reset the NE558
quadruple timer that interfaces to the hand controls, as described later in
the section “Game I/0 Signals.”

The Keyboard

e ]

The Apple Ile's keyboard is a matrix of keyswitches connected to an
AY-3600-type kevboard decoder via a ribbon cable and a 26-pin connector.
The AY-3600 scans the array of keys over and over to detect any keys
pressed. The scanning rate is set by the external resistor-capacitor network
made up of C70 and R32. The debounce time is also set externally, by CT1.

The AY-3600's outputs include five bits of key code plus separate lines for
[COoNTROL ), [SHIFT], any-key-down, and keyboard strobe. The
any-key-down and keyboard-strobe lines are connected to the I0U, which
addresses them as soft switches. The key-code lines, along with
and (SHIFT ], are inputs to a separate 2316 ROM. The ROM translates them
to the character codes that are enabled onto the data bus by signals named
KBD' and ENKBD'. The KBD' signal is enabled by the MMU whenever a
program reads location $C000, as described in the section “Reading the
Keyboard” in Chapter 2.

Built-in I/0 Circuits 187




Table 7-16. Keyboard Connector Signals

Pin Number  Name Description

1,2,4,6810,  Y0-Y9 Y-direction key-matrix connections
23,25,12,22

3 +5 +5 volt supply

579,16 n.c.

1 LCNTL' Line from key

13 GND System common ground
14,16,20,21,  X0-X7 X-direction key-matrix connections
19,26,17

24 LSHFT’ Line from key

Connecting a Keypad

There is a smaller connector wired in parallel with the keyboard connector.

You can connect a ten-key numeric pad to the Apple Ile via this connector.

Table 7-17. Keypad Connector Signals

Pin Number = Name Description

1,25,34,6 Y0-Y5 Y-direction key-matrix connections

7 ne.

911,108 X4-X7 X-direction key-matrix connections
188 Chapter 7: Hardware Implementation




Cassette 1/0

|t sl T e

The two miniature phone jacks on the back of the Apple Ile are used to
connect an audio cassette recorder for saving programs. The output signal
to the cassette recorder comes from a pin on the I0U via resistor network R6
and RY, which attenuates the signal to a level appropriate for the recorder’s
microphone input. Input from the recorder is amplified and conditioned by a
type 741 operational amplifier and sent to one of the inputs of the 7415251
input multiplexer.

The signal specifications for cassette I/0 are

o Input: 1 volt (nominal) from recorder earphone or monitor output. Input
impedance is 12K ohms.

o Qutput: 25 millivolts to recorder microphone input. Output impedance is
100 ohrms.

The Speaker

= m=xse—an o= o]

The Apple Ile’s built-in loudspeaker is controlled by a single bit of output
from the IOU (Input Output Unit). The signal from the IOU is AC coupled to
Q5, an MPSA13 Darlington transistor amplifier. The speaker connector is a
Molex KK100 connector, J18 in Figure 7-13b, with two square pins 0.25
inches tall and on 0.10-inch centers.

A light-emitting diode is connected in parallel across the speaker pins such
that, when the speaker is not connected, the diode glows whenever the
speaker signal is on. This diode is used as a diagnostic indicator during
assembly and testing of the Apple Ile.

Table 7-18. Speaker Connector Signals

Pin

Number Name Description

1 SPKR Speaker signal. This line will deliver about
(0.5 watts into an 8-ohm speaker.

2 +5 +5V power supply. Note that the speaker is not
connected to system ground.

Built-in I/0 Circuits 189




140

Game 1/O Signals

Several 1/0 signals that are individually controlled via soft switches are
collectively referred to as the game signals. Even though they are normally
used for hand controls, these signals can be used for other simple [/0
applications. There are five output signals: the four annunciators,
numbered A0 through A3, and one strobe output. There are three one-bit
inputs, called swifches and numbered SW0 through SW2, and four analog
inputs, called paddles and numbered PDL0 through PDL3.

The annunciator outputs are driven directly by the [0U (Input Output Unit).

These outputs can drive one TTL (transitor-transitor logic) load each; for
heavier loads, you must use a transistor or a TTL buffer on these outputs.
These signals are only available on the 16-pin internal connector. (See
Table 7-19.)

The strobe output is a pulse transmitted any time a program reads or writes
to location $C040. The strobe pin is connected to one output of the 74LS154
address decoder. This TTL signal is normally high; it goes low during ¢0 of
the instruction eycle that addresses location $C040. This signal is only
available on the 16-pin internal connector. (See Table 7-19.)

The game inputs are multiplexed along with the cassette input signal by a
7418251 eight-input multiplexer enabled by the CO6X’ signal from the
7418154 1/0 address decoder. Depending on the low-order address, the
appropriate game input is connected to bit 7 of the data bus.

The switch inputs are standard low-power Schottky TTL inputs. To use
them, connect each one to 560-ohm pull-down resistors connected to the
ground and through single-pole, momentary-contact pushbutton switches to
the +5 volt supply.

The hand-control inputs are connected to the timing inputs of an NE558
quadruple 555-type analog timer. Addressing $C07X sends a signal from the
741.8154 that resets all four timers and causes their outputs to go to

1 (high). A variable resistance of up to 150K ochms connected between one
of these inputs and the +5V supply controls the charging time of one of four
0.022-microfarad capacitors. When the voltage on the capacitor passes a
certain threshold, the output of the NE558 changes back to 0 (low).
Programs can determine the setfing of a variable resistor by resetting the
timers and then counting time until the selected timer input changes from
high to low. The resulting count is proportional to the resistance.

Chapter 7 Hardware Implementation




&

The game [/0 signals are all available on a 16-pin DIP socket labelled
GAME [/0 on the main circuit board inside the case. The switches and the
paddles are also available on a D-type miniature connector on the back of
the Apple Ile; see J8 and J15 in Figure 7-13d.

Table 7-19. Game I/0 Connector Signals

Internal- Back-Panel-
Connector Connector
Pin Number  Pin Number  Signal Name  Description

1 2 +5V +5V power supply. Total current
drain from this pin must not
exceed 100mA.

2,34 7,16 PBO-PB2 Switch inputs. These are
standard 74LS inputs.

5 - STROBE’ Strobe output. This line goes low

during ¢o of a read or write
instruction to location $C04(),

6,10,7,11 5849 PDLO-PDL3 Hand control inputs, Each of
these should be connected to a
150K-ohm variable resistor
connected to +5V.

8 3 GND System ground.

15,14,13,12 - ANO-AN3 Annunciators, These are
standard 74LS TTL outputs and
must be buffered to drive other

than TTL inputs.

9,16 - n.c. Nothing is connected to these
pins.

Built-in /0 Circuits 191




Expanding the Apple lle

Chapter 6 describes the standards for
prograruming peripheral cards for the
Apple [le.

T o o B T 2 e e e P P L O 4 S e |
The main circuit board of the Apple lle has eight empty card connectors or
slots on it. These slots make it possible to add features to the Apple Ile by
plugging in peripheral cards with additional hardware. This section
describes the hardware that supports them, including all of the signals
available on the expansion slots.

The Expansion Slots
(e W ¥ N A L g X

The seven connectors lined up across the back part of the Apple Ile’s main
circuit card are the expansion slots, also called peripheral slots or simply
slots, numbered from 1 to 7. They are 50-pin PC-card edge connectors with
pins on 0.10-inch centers. A PC card plugged into one of these connectors
has access to all of the signals necessary to perform input and output and to
execute programs in RAM or ROM on the card. These signals are described
briefly in Table 7-20. The following paragraphs describe the signals in
general and mention a few points that are often overlooked. For further
details, refer to the schematic diagram in Figures 7-13a, 7-13b, 7-13¢, and
7-13d.

The Peripheral Address Bus

The microprocessor's address bus is buffered by two 7415244 octal
three-state buffers. These buffers, along with a buffer in the
microprocessor’s R/W’ line, are enabled by a signal derived from the DMA’
daisy-chain on the expansion slots. Pulling the peripheral line DMA’ low
disables the address and R/W’ buffers so that peripheral DMA circuitry can
control the address bus. The DMA address and R/W” signals supplied by a
peripheral card must be stable all during ¢0 of the instruction cycle, as
shown in Figure 7-12.

Another signal that can be used to disable normal operation of the Apple Ile
is INH’. Pulling INH’ low disables all of the memory in the Apple Ile except
the part in the I/0 space from $C000 to SCFFF. A peripheral card that uses
either INH” or DMA’ must observe proper timing; in order to disable RAM
and ROM cleanly, the disabling signal must be stable all during ¢0 of the
instruction cycle (refer to the timing diagram in Figure 7-12).

Chapter 7: Hardware Implementation




The peripheral devices should use /0 SELECT” and DEVICE SELECT” as
enables. Most peripheral ICs require their enable signals to be present for a
certain length of time before data is strobed into or out of the device.
Remember that [/0 SELECT” and DEVICE SELECT” are only asserted
during ¢0 high.

The Peripheral Data Bus

The Apple Ile has two versions of the microprocessor data bus: an internal
bus, MD0-MD7, connected directly to the microprocessor; and an external
bus, DO-D7, driven by a 74L.S245 octal bidirectional bus buffer, The 65C02 is
fabricated with MOS circuitry, so it can drive capacitive loads of up to about
130 pF. If peripheral cards are installed in all seven slots, the loading on the
data bus can be as high as 500 pF, so the 74LS245 drives the data bus for the
peripheral cards. The same argument applies if you use MOS devices on
peripheral cards: they don't have enough drive for the fully-loaded bus, so
you should add buffers.

Loading and Driving Rules

Table 7-20 shows the drive requirements and loading limits for each pin on
the expansion slots. The address bus, the data bus, and the R/W’ line
should be driven by three-state buffers. Remember that there is
considerable distributed capacitance on these busses and that you should
plan on tolerating the added load of up to six additional peripheral cards.
MOS devices such as PIAs and ACIAs cannot switch such heavy capacitive
loads. Connecting such devices directly to the bus will lead to possible
timing and level errors.

Interrupt and DMA Daisy Chains

The interrupt requests (IRQ’ and NMI") and the direct-memory access
(DMA”") signal are available at all seven expansion slots. A peripheral card
requests an interrupt or a DMA transfer by pulling the appropriate output
line low (active). If two peripheral cards request an interrupt or a DMA
transfer at the same time, they will contend for the data and address
busses. To prevent this, two pairs of pins on each connector are wired as a
priority daisy chain. The daisy-chain pins for interrupts are INT IN and INT
OUT, and the pins for DMA are DMA IN and DMA OUT, as shown for J1-J7
in Figure 7-13d.

Expanding the Apple Ile 193




194

Each daisy chain works like this: the output from each connector goes to
the input of the next higher numbered one. For these signals to be useful for
cards in lower numbered connectors, all of the higher numbered connectors
must have cards in them, and all of those cards must connect DMA IN to
DMA OUT and INT IN to INT OUT. Whenever a peripheral card uses pin
DMA’, it must do so only if its DMA IN line is active, and it must disable its
DMA OUT line while it is using DMA’. The INT IN and INT OUT lines must
be used the same way: enable the card’s interrupt circuits with INT IN, and
disable INT OUT whenever IRQ’ or NMI” is being used.

Figure 7-12. Peripheral-Signal Timing

mw J L LT LT UL LT

6 smed | leed | L

@ | | CPU Phase |

6 | Video Phase

Address —|  |+—140 ns (Max) 30 ns (Min)—>| |~—
AO-AL5, R/W’
{:NH', DMA’ } X .
Peripheral Select

DEVICE SELECT
1/0 STROBE’

‘ 1/0 SELECT’ }

]

Chapter 7: Hardware Implementation




Table 7-20. Expansion Slot Signals

Pin
1

2-17

18

19

20

a1

22

23
24
25

26
27

28
29

Name

1/0 SELECT

A0-Al5

R/W’

SYNC’

1/0 STROBE’

RDY

DMA’

INTOUT
DMA OUT

+5V

GND
DMAIN

INTIN

NMI

Expanding the Apple Ile

Description

Normally high; goes low during ¢0 when the 65C02
addresses location $CnXX, where n is the connector
number. This line can drive 10 LS TTL loads.*
Three-state address bus. The address becomes
valid during ¢1 and remains valid during ¢0. Each
address line can drive 5 LS TTL loads.*
Three-state read/write line. Valid at the same time
as the address bus; high during a read cycle, low
during a write cycle. It can drive 2 LS TTL loads.*
Composite horizontal and vertical sync, on
expansion slot 7 only. This line can drive 2 LS TTL
loads.*

Normally high; goes low during ¢0 when the 65C02
addresses a location between $0800 and SCFFF.
This line can drive 4 LS TTL loads.

Input to the 65C02. Pulling this line low during ¢1
halts the 65C02 with the address bus holding the
address of the location currently being fetched.
This line has a 3300 ohm pullup resistor to +5V.
Input to the address bus buffers. Pulling this line
low during ¢1 disconnects the 66C02 from the
address bus. This line has a 3300 ohm pullup
resistor to +5V.

Interrupt priority daisy-chain output. Usually
connected to pin 28 (INT IN).¥

DMA priority daisy-chain output. Usually
connected to pin 22 (DMA IN).

+5-volt power supply. A total of 500mA is available
for all peripheral cards.

System common ground.

DMA priority daisy-chain input. Usually connected
to pin 24 (DMA OUT).

Interrupt priority daisy-chain input. Usually
connected to pin 23 (INT QUT).

Non-maskable interrupt to 65C02. Pulling this line
low starts an interrupt cycle with the
interrupt-handling routine at location $03FB. This
line has a 3300 ohm pullup resistor to +5V.

195




196

Table 7-20—Continued. Expansion Slot Signals

Pin
30

31
32

33
34
35
36
37
38
39

41

42-49

50

Name
IRQ’

RES’

INH

-12V

-bV
3.58M
™

Q3

¢l
uPSYNC

0

DEVICE
SELECT”

DO0-D7

+12V

Description

Interrupt request to 65C02, Pulling this line low
starts an interrupt cycle only if the
interrupt-disable (T) flag in the 65C02 is not set.
Uses the interrupt-handling routine at location
$08FE. This line has a 3300 ohm pullup resistor to
+5V.

Pulling this line low initiates a reset routine, as
described in Chapter 4.

Pulling this line low during ¢! inhibits (disables)
the memory on the main circuit board. This line
has a 3300 ohm pullup resistor to +5V.

-12 volt power supply. A total of 200mA is available
for all peripheral cards.

-5 volt power supply. A total of 200mA is available
for all peripheral cards.

3.58 MHz color reference signal, on slot 7 only. This
line can drive 2 LS TTL loads.*

System 7 MHz clock. This line can drive 2 LS TTL
loads.*

System 2 MHz asymumetrical clock. This line can
drive 2 LS TTL loads.*

65C02 phase 1 clock. This line can drive 2 LS TTL
loads.*

The 66C02 signals an operand fetch by driving this
line high during the first read cycle of each
instruction.

65C02 phase 0 clock. This line can drive 2 LS TTL
loads.*

Normally high; goes low during ¢0 when the 65C02
addresses location $C0nX, where n is the connector
number plus 8. This line can drive 10 LS TTL
loads.*

Three-state buffered bi-directional data bus. Data
becomes valid during ¢(0 high and remains valid
until ¢0 goes low. Each data line can drive one

LS TTL load.*

+12 volt power supply. A total of 250mA is
available for all peripheral cards.

* Loading limits are for each card.

T On slot 7 only, this pin can be connected to the graphics-mode signal GR: see text for

details.

Chapter 7: Hardware Implementation




Auxiliary Slot

The large connector at the left side of the Apple Ile’s main circuit card is the
auxiliary slot. It is a 60-pin PC-card edge connector with pins on 0.10-inch
centers. A PC card plugged into this connector has access to all of the
signals used in producing the video display. These signals are described
briefly in Table 7-21. For further details, refer to the schematic diagram in
Figures 7-13a, 7-13b, 7-13¢, and 7-13d.

Many of the internal signals that are not available on the expansion slots
are on the auxiliary slot. By using both kinds of connectors, manufacturing
and repair personnel can gain access to most of the signals needed for
diagnosing problems in the Apple Ile.

80-Column Display Signals

The additional memory needed for producing an 80-column text display is
on the 80-column text card, along with the buffers that transfer the data to
the video data bus, as described earlier in this chapter in the section “Text
Displays.” The signals that control the 80-column text data include the
system clocks ¢0 and ¢1, the multiplexed RAM address RAO-RAT, the RAM
address-strobe signals PRAS’ and PCAS’, and the auxiliary-RAM enable
signals, EN80’ and R/W80. The EN8(’ enable signal is controlled by the
80STORE soft switch described in Chapter 4. Data is sent to the auxiliary
memory via the internal data bus MD0-MDT; the data is transferred to the
video generator via the video data bus VID0-VID7.

Expanding the Apple Ile 197




Table 7-21. Auxiliary Slot Signals

Pin Name Description

1 3.58M 3.58 MHz video color reference signal. This line can
drive two LS TTL loads.

2 VIDTM Clocks the video dots out of the 74166
parallel-to-serial shift register. This line can drive two
LS TTL loads.

3 SYNC’ Video horizontal and vertical sync signal. This line
can drive two LS TTL loads,

4 PRAS’ Multiplexed RAM row-address strobe. This line can
drive two LS TTL loads.

5 VC Third low-order vertical-counter bit. This line can
drive two LS TTL loads.

6 CO7X” Hand-control reset signal. This line can drive two LS
TTL loads.

7 WNDW’ Video non-blank window. This line can drive two LS
TTL loads.

8 SEGA First low-order vertical counter bit. This line can
drive two LS TTL loads.

51,10,49,48, RAO-RA7T  Multiplexed RAM-address bus. This line can drive

13,14,46,9 two LS TTL loads.

11,12 ROMENI,  Enable signals for the ROMs on main circuit board.

ROMEN2

44,4340,39, MDO-MD7  Internal (unbuffered) data bus. This line can drive

21,20,17,16 two LS TTL loads.

45,42,41,38, VIDO-VID7 Video data bus. This three-state bus carries video

22,19,18,15 data to the character generator.

23 0 65C02 clock phase (0. This line can drive two LS TTL
loads.

24 CLRGAT”  Color-burst gating signal. This line can drive two LS
TTL loads.

25 80VID” Enables 80-colurnn display timing. This line can drive
two LS TTL loads.

26 EN80’ Enable for auxiliary RAM. This line can drive two LS
TTL loads.

27 ALTVID”  Alternative video output to the video summing
amplifier.

28 SEROUT  Video serial output from 74166 parallel-to-serial shift
register.

29 ENVID’ Normally low; driving this line high disables the
character generator such that the video dots from the
shift register are all high (white), and alternative
video can be sent out, via ALTVID’. This line has a
1000 ohm pulldown resistor to ground.

198 Chapter 7: Hardware Implementation




Table 7-21—Continued. Auxiliary Slot Signals

Pin Name

30 +5

31 GND
32 14M
33 PCAS’

34 LDPS’

35 R/W80
36 ¢l
37 CASEN'
47 HO

AN3
52 R/W’
53 Q3
54 SEGB
55 FRCTXT’
56,67 RAY"RAL0
58 GR
59 ™
60 ENTMG’

%
@
]
]
=
=
E |
& 0
&
w
@
=
o
i
4
a
4

Expanding the Apple Ile

Description

+5 volt power supply.

System common ground.

14.3 MHz master clock signal. This line can drive two
LS TTL loads.

Multiplexed column-address strobe. This line can
drive two LS TTL loads.

Strobe to video parallel-to-serial shift register. This
signal goes low to load the contents of the video data
bus into the shift register. This line can drive two LS
TTL loads.

Read,/write signal for RAM on the card in this slot.
This line can drive two LS TTL loads.

65C02 clock phase 1. This line can drive two LS TTL
loads.

Column-address enable. This signal is disabled (held
high) during accesses to memory on the card in this
slot, This line can drive two LS TTL loads.
Low-order horizontal byte counter. This line can drive
two LS TTL loads.

Output of annunciator number 3. This line can drive
two LS TTL loads.

65C02 read/write signal. This line can drive two LS
TTL loads.

2 MHz asymmetrical clock. This line can drive two LS
TTL loads.

Second low-order vertical-counter bit. This line can
drive two LS TTL loads.

Normally high; pulling this line low enables 14MHz
video output even when GR is active.
Character-generator control signals from the I0U.
This line can drive two LS TTL loads.
Graphics-mode enable signal. This line can drive two
LS TTL loads.

7 MHz timing signal. This line can drive two LS TTL
loads.

Normally low; pulling this line high disables the
master timing from the PAL device. This line has a
1000 ohm pulldown resistor to ground.

199




o) B -7 25-pr&l@) 7

iplsE-@r

Erdly

A
ELSERY

&
5

23%¥: 9

5%

e

ENINONT ON

(L-iriv)
{h.ﬂb - HNI bl
1t
* =
54 w
*Sva 5 =
aSved -
() =
e 5
* &
(3
T ] =
wm o] k=
e, il oy m
|
o 20069 =
wwes1 | =
—
e N BT A 3 o ]
M Mn_q sa uw w“ Um
v va =
i e .
T e®” 2 Zon =
—1 6 L] Teie
o e g
1200
[0 S SIMb o o
o el
v b wou1
1 9 —ls 1 FIT)
TN D o e T )
£l W
a
o] e
9
[v ]
2

RG22

(0t )

-alvn

[ Me ] ‘uresgei(] oNRWLYIS "DET-L ANy =




(43INVIdS)

i

_w.w..lum.n:.."w__..
Ty S1-4IF -9
= 2-4r'6-9ir

> S LIS
B-LI p-air
[ wA 4
AU = 94 E-air
s s i L )
O =gy 2 _mw_wwﬂ...nww_.:.
© =gy = [T B S
i
_ﬁzw.
2w lL-110 o] [ siF TV TE w..w Iy}
£ L1 =gy v g LLL LI I
wi-r g 5 ? CLECACL R,
s { S¥ELIT T 5 L] woiANg
WLy - e i
L 31 - ﬂdﬂ“_s:ﬂ..z el
v ier a T o
6% (4111 =a-em - N N °
[ s
U G, g s oy 0 @ £05 — BN
~l.“ 1sed sl AT [GELSELSE 'nu%
1 Eimirk
1 TIg = -SMERr (n
L] T T
A 0T LI AT (v
B tas .
b (T g BSIre-er (v
i ias .
e FTaT 9SIP ST (w)
w990 num
ol
ik sl SR P S-UC ()
21 €-SIC " 1-@F 'S -2IF (v}
7 CTRYILY e
e SavOJgRS ™ TSI 180 L Lr ()

[ @il

¢ NS~

L

LT B

s |

D

-

sanz3

0 =—5x@s

£3

{21 Fieehin

#EYLSU/L

g Wed ‘WRIFRL(] JYRWIS QE[-/ 24nbt]

Expanding the Apple [le



3 24

A

(o [1-)ras-gr

i

2

BISR-L1 -9 x
(v) 25-9r

L3
) po 0P E2-@r 2K lﬂm

e

U

q

54

Pt

asi

tmee(4]ros-er @) I
(%) LE[e-1]rss-9r (1)

£0
v -0 (1)
(w}-9r(1) ‘"”|"u
ive-pr =T
(02 pr =2

E[S Bpapd
LRI BRI

25832383

W SIAIP R[]0 ) -

& LIS

(P RS-Pr21-SIF =

ENY

WSLSIr @ ‘m

& s
g
o

(F)H-sir .ﬂ(
(P)SHGIr =

wicv-gr =2t

tw) @) L

e-#v

assv

¢ir
(¥lsz-pr

AR

=|nlm

~

& QIAS

(v95-gr =g

3105 P o
N 62-10p5-pr -t

FLIL
HEE 45
yge M

gan (2

iy

[l
0151

(0] P21 e

50 |€

9
v
S

& 1N0d3IS
rigr

[e-glan

Chapter 7: Hardware Implementation

£ e "WIRIFRI(] JNRUIBYDG T4 24NBU]

202



<5}
=
2
(=9
=
-1,
@
=
=
=5
A=
S
=
[}
f="
>
=

¥ Med ‘WeIFei(] ONRWSDS P[4 ddnbig






Appendix A

The 65C02 Microprocessor




This appendix contains a description of the differences between the 6502
and the 65C02 microprocessors. It also contains the data sheet for the 65C02
MiCroprocessor.

The 6502 microprocessor was used in the original Apple Ile, Apple II Plus,
and Apple II. The 65C02 is a 6502 that uses less power and has ten new
instructions and two new addressing modes. The 65C02 is used in both the
enhanced Apple Ile and the Apple Ilc.

In the data sheet tables, execution times are specified in number of cycles.
One cycle time for the Apple Ile equals 0.978 microseconds, giving a system
clock rate of about 1.02 MHz.

Note: 1f you want to write programs that execute on all computers in the
Apple I series, use only those 65C02 instructions that are also present on
the 6502.

Differences Between 6502 and 65C02

206

T e T s o | T YN ey (e e s e S i g T R o S e e Vo S e ]
The data sheet lists the instructions and addressing modes of the 65C02.
This section supplements that information by listing those instructions
whose execution times or results differ in the 65602 and the 65C02.

Different Cycle Times
e e e sty

A few instructions on the 65C02 operate in different numbers of cycles than
their 65C02 equivalents. These instructions are listed in Table A-1.

Table A-1. Cycle Time Differences

6502 65C02
Instruction/Mode Opcode Cycles Cycles
ASL Absolute, X 1E 7 6
DEC Absolute, X DE 7 6
INC Absolute, X FE 7 6
JMP (Absolute) 6C 5 6
LSR Absolute, X 5E 7 6
ROL Absolute, X 3E 7 6
ROR Absolute, X TE 7 6

Appendix A: The 65C02 Microprocessor




Different Instruction Results
o s T R R N A R et e T e L)

It is important to note that the BIT instruction when used in immediate
mode (opcode $89) leaves processor status register bits 7 (N) and 6 (V)
unchanged on the 65C02. On the 6502, all modes of the BIT instruction have
the same effect on the status register: the value of memory bit 7 is placed in
status bit 7, and memory bit 6 is placed in status bit 6.

Also note that if the JMP indirect instruction (code $6C) references an
indirect address location that spans a page boundary, the 65C02 fetches the
high-order byte of the effective address from the first byte of the next page,
while the 6602 fetches it from the first byte of the current page. For
example, JMP ($02FF) gets ADL from location $02FF on both processors.
But on the 65C02, ADH comes from $0300; on the 6502, ADH comes

from $0200.

Data Sheet

The remaining pages of this appendix are copyright 1982, NCR Corporation,
Dayton, Ohio, and are reprinted with their permission.

Data Sheet 207




= GENERAL DESCRIPTION

The NCR CMOS 65602 is an B-bit microprocessor which is soft-
ware compatible with the NMOS 6502. The NCR65C02 hardware
interfaces with all 6500 peripherals. The enhancements include
ten additional instructions, expanded operational codes and
two new addressing modes. This microprocessor has all of the ad-
vantages of CMOS technology: low power consumption, increased
noise immunity and higher reliability. The CMOS 6502 is a low
power high performance microprocessor with applications in the
consumer, business, automotive and communications market.

= FEATURES

® Enhanced software performance including 27 additional OP codes

encompassing ten new instructions and two additional
addressing modes.

® 66 microprocessor instructions.
® 15 addressing modes.

® 178 operational codes.

® 1MHz, 2MHz operation.

e Operates at frequencies as low
as 200 HZ for even lower power
consumption (pseudo-static: stop during @3 high).

* Compatible with NMOS 6500 series
microprocessors.

®* B4 K-byte addressable memory.

NCR65C02

®= PIN CONFIGURATION

~—— REGISTER SECTION

CONTROL SECTION ——m

RES iRG AW

% i L3

= NCR65C02 BLOCK DIAGRAM

Sg N

@y 1ouT)
2z10UT)
50

AW

® |Interrupt capability. ,: 7 'Wd Mo
- LOGIC
® Lower power consumption. [ RO ——— L B
4mA @ 1MHz. | i | =N -
e +5 volt power supply. | :q ol E T L | e
. . g " (SRR - 4 T H {
® B-bit bidirectional data bus. | a5 ﬁg S I s || e | | T
* Bus Compatible with M6800. | Aeeq CE_C\JI aw f | Jmng
a7l K= | ——
® Non-maskable interrupt. L T : |
p ;DSRESS '4; i ‘ 1
® 40 pin dual-in-line packaging. 2 faceumpiaton =1 | |
ag |__wk:>
. . z ﬁ 7
® B-bit parallel processing a8 H
e Decimal and binary arithmetic. l:'" H PN
" w |
* Pipeline architecture. [ 412 ] *&" =
A3 C
® Programmable stack pointer, i
® Variable length stack. Ats '"322%’%':’3"]
1

¢ Optional internal pullups for =
(RDY, IRQ, 50, NMI and RES)

LEGEND

ﬁ “BEITLINE

Specifications are subject to | rroune

change without notice.

DATA
BUS

Copyright ©1882 by NCR Corporation, Dayton, Ohio, USA

208 Appendix A: The 656C02 Microprocessor




NCR65C02
s ABSOLUTE MAXIMUM RATINGS: (Vpp =5.0V 5%, Vss =0V, Ta = 0°to + 70°C)
RATING SYMBOL VALUE UNIT
SUPPLY VOLTAGE Vop —0.3t0 +7.0 A"
INPUT VOLTAGE Vin —0.3to0 +7.0 v
OPERATING TEMP, Ta Oto+70 *C
STORAGE TEMP. To1g _E5to + 150 °C
e PIN FUNCTION
PIN FUNCTION
AD - A15 Address Bus
DO - D7 Data Bus
TRG * Interrupt Request
RDY * Ready
ML Memory Lock
NMI* Non-Maskable Interrupt
SYNC Synchronize
RES* Reset
50* Set Overflow
NC No Connection
R/W Read/Write
vDD Power Supply {+5V)
VSS Internal Logic Ground
[14] Clock Input
91,02 Clock Qutput

*This pin has an optional internal pullup for a No Connect condition.

= DC CHARACTERISTICS

SYMBOL MIN. TYP. MAX UNIT
Input High Voltage
0p {IN) Vi Vgs + 2.4 - Voo v
Input High Voltage
RES, NMI, RDY, TRQ, Data, S.0. Vgs + 2.0 - . v
Input Low Voltage
B (IN) ViL Vgs -0.3 - Vgg+ 0.4 v
RES, NMI, RDY, TRQ, Data, S.0. o - Vgs+ 0.8 v
Input Leakage Current
{Vin =010 5.25V, Vpp =5.25V) hin
With pullups -30 - +30 HA
Without pullups - - +1.0 HA

Three State (Off State) Input Current
‘V|N =04to 2.4\", VCC =5,28V)
Data Lines I1s1 = = 10 KA
Qutput High Voltage
(lgn =-100 pAde, Vpp=4.75V
SYNC, Data, A0-A15, R/W) Vou Vgg +2.4 - - Vv
Out Low Voltage
(|o|_ = 1.6mAdec, Vop = 4.75V

SYNC, Data, AD-A15, R/W) VoL - - Vgs + 0.4 vV
Supply Current f=1MHz Ipp - - 4 mA
Supply Current f=2MHz Ipp = - 8 mA
Capacitance Cc pF
(Vin =0, Ta = 25°C, f = 1MHz)
Logic Cn = - 5
Data - - 10
AQ-A15, R/W, SYNC Cout - - 10
Bg (IN) C@g (IN) = - 10
Data Sheet 209




NCR65C02

= TIMING DIAGRAM

t

A

e

L] j
toy
/1] \ /
:] R S U S tai =t
}] Nt —— i LY
- fremst- tADS - tAH
ADDR, R/W );
tace toed o = tour
= = tups > = tonw
WRITE DATA >7 ¢ }
K.
= tsvne
SYNC X
_ baa L
Mb )‘Eﬁ X
- % = tecs
RDY, IRQ
NMI, RES X t
= ™ 'so
SO }

Note: All timing is referenced from a high voltage of 2.0 volts and a low voltage of 0.8 volts.

= NEW INSTRUCTION MNEMONICS

HEX MNEMONIC DESCRIPTION

80 BRA Branch relative always [Relative]

3A DEA Decrement accumulator [Accum]

1A INA Increment accumulator [Accum]

DA PHX Push X on stack [Implied]

5A PHY Push Y on stack [Implied]

FA PLX Pull X from stack [Implied]

7A PLY Pull Y from stack [Implied]

ac STZ Store zero [Absolute]

9E STZ Store zero [ABS, X]

64 STZ Store zero [Zero page]

74 sTZ Store zero [ZPG X]

1C TRB Test and reset memory bits with accumulator [Absolute]

14 TRB Test and reset memory bits with accumulator [Zero page]

oc TSB Test and set memory bits with accumulator [Absolute]

04 TSB Test and set memory bits with accumulator [Zero page]
= ADDITIONAL INSTRUCTION ADDRESSING MODES

HEX MNEMONIC DESCRIPTION

72 ADC Add memory to accumulator with carry [{ZPG)]

32 AND “AND’ memory with accumulator [(ZPG)]

3c BIT Test memory bits with accumulator [ABS, X]

34 BIT Test memory bits with accumulator [ZPG, X]

D2 CMP Compare memory and accumulator [(ZPG)]

52 EOR “Exclusive Or"" memory with accumulator [(ZPG)]

7C JMP Jump (New addressing mode) [ABS(IND,X)]

B2 LDA Load accumulator with memory ({(ZPG)]

12 ORA “OR" memory with accumulator [(ZPG)])

F2 SBC Subtract memory from accumulator with borrow [(ZPG)]

92 STA Store accumulator in memory [(ZPG)]
210 Appendix A: The 65C02 Micropracessor




NCR65C02

= MICROPROCESSOR PROGRAMMING MODEL

7 0
7 g NIVIT[B[BITIZIc] FROCESSOR STATUS
[ A ] AccumuLaToR A
7 i
7|: _ Y . INDEX REGISTER ¥ SRR R
ZERD 1 = RESULT ZERO
s :i] INDEX REGISTER X ZERO 1 - RESULT ZERD
DECIMAL MODE 1 = TRUE
I e 8 % — APRDGRAM SRS BRK COMMAND 1 = BRK
] s | STACK POINTER S OVERFLOW 1 = TRUE

= FUNCTIONAL DESCRIPTION

Timing Control

The timing control unit keeps track of the instruction
cycle being monitored. The unit is set to zero each time
an instruction fetch is executed and is advanced at the
beginning of each phase one clock pulse for as many
cycles as is required to complete the instruction. Each
data transfer which takes place between the registers de-
pends upon decoding the contents of both the instruc-
tion register and the timing control unit,

Program Counter

The 16-bit program counter provides the addresses which
step the microprocessor through sequential instructions
in a program.

Each time the microprocessor fetches an instruction
from program memory, the lower byte of the program
counter (PCL) is placed on the fow-order bits of the
address bus and the higher byte of the program counter
(PCH) is placed on the high-order 8 bits. The counter is
incremented each time an instruction or data is fetched
from program memory.

Instruction Register and Decode

Instructions fetched from memory are gated onto the
internal data bus. These instructions are latched into the
instruction register, then decoded, along with timing and
interrupt signals, to generate control signals for the var-
ious registers,

Arithmetic and Logic Unit (ALU)

All arithmetic and logic operations take place in the
ALU including incrementing and decrementing internal
registers (except the program counter). The ALU has no
internal memory and is used only to perform logical and
transient numerical operations.

Data Sheet

NEGATIVE 1 = NEG.

Accumulator

The accumulator is a general purpose 8-bit register that
stores the results of most arithmetic and logic operations,
and in addition, the accumulator usually contains one of
the two data words used in these operations.

Index Registers

There are two 8-bit index registers (X and Y), which
may be used to count program steps or to provide an
index value to be used in generating an effective address.

When executing an instruction which specifies indexed
addressing, the CPU fetches the op code and the base
address, and modifies the address by adding the index
register to it prior to performing the desired operation,
Pre- or post-indexing of indirect addresses is possible (see
addressing modes).

Stack Pointer

The stack pointer is an 8-bit register used to control the
addressing of the variable-length stack on page one. The
stack pointer is automatically incremented and decre-
mented under control of the microprocessor to perform
stack manipulations under direction of either the program
or interrupts (NMI and IRQ). The stack allows simple
implementation of nested subroutines and multiple level
interrupts. The stack pointer should be initialized before
any interrupts or stack operations occur.

Pr Status Regi

The 8-bit processor status register contains seven status
flags. Some of the flags are controlled by the program,
others may be controlled both by the program and the
CPU. The 6500 instruction set contains a number of
conditional branch instructions which are designed to
allow testing of these flags (see microprocessor program-
ming model).

211



NCR65C02

# AC CHARACTERISTICS vpp=50V15% Ta=0°Cto70°C, Load = 1 TTL + 130 pF

TMHZ ZMHZ 3MHZ
Parameter Symbol Min Max Min Max Min Max Unit
Delay Time, @g (IN) to @2 (OUT) toLy - 60 = 60 20 60 nS
Delay Time, @1 (OUT) to 82 (OUT) | tpLys -20 20 -20 20 —-20 20 nS
Cycle Time teve 1.0 5000" 0.50 50007 0.33 5000% HS
Clock Pulse Width Low tpL 460 - 220 - 160 - nS
Clock Pulse Width High teH 460 - 220 - 160 - nS
Fall Time, Rise Time te, tR - 25 - 25 - 25 nS
Address Hold Time taH 20 - 20 - 0 - nS
Address Setup Time taps - 225 = 140 - 110 nS
Access Time tace 650 = 310 - 170 = nS
Read Data Hold Time toHR 10 - 10 10 - nS
Read Data Setup Time tpsu 100 = 60 - 60 - nS
Write Data Delay Time tmps - 30 — 30 — 30 nS
Write Data Hold Time toHwW 20 - 20 - 15 - nS
50 Setup Time tso 100 - 100 - 100 - nS
Processor Control Setup Time** tpcs 200 - 150 - 150 - nS
SYNC Setup Time Isyne - 2256 - 140 - 100 nS
ML Setup Time ML - 225 - 140 - 100 nS
Input Clock Rise/Fall Time trgo tRGo - 2% - 25 - 25 nS
*NCRB5C02 can be held static with @ 2 high.

**This parameter must only be met to guarantee that the signal will be recognized at the current clock cycle,

= MICROPROCESSOR OPERATIONAL ENHANCEMENTS

Function

NMOS 6502 Microprocessor

NCRE5C02 Microprocessor

Indexed addressing across page boundary.

Extra read of invalid address.

Extra read of last instruction byte,

Execution of invalid op codes.

Some terminate only by reset, Resulits
are undefined.

All are NOPs (reserved for future use).

Op Code Bytes Cycles
X2 2 2
X3, X7, XB, XF 1 1
44 2 3
54, D4, F4 2 4
5C 3 8
DC, FC 3 4

Jump indirect, operand = XXFF.

Page address does not increment.

Page address increments and adds one
additional cycle.

Read/modify/write instructions at
effective address.

One read and two write cycles.

Two read and one write cycle.

Decimal flag.

Indeterminate after reset.

Initialized to binary mode (D=0) after
reset and interrupts,

Flags after decimal operation,

Invalid N, V and Z flags.

Valid flag adds one additional cycle.

Interrupt after fetch of BRK instruc-
tion.

Interrupt vector is loaded, BRK vector
is ignored.

BRK is executed, then interrupt is

executed.

= MICROPROCESSOR HARDWARE ENHANCEMENTS

Function

NMOS 6502

NCR65C02

Assertion of Ready RDY during
write operations.

Ignored,

Stops processor during @3.

Unused input-only pins (TRQ, NMI,
RDY, RES, 50).

Must be connected to low impedance
signal to avoid noise problems.

Connected internally by a high-
resistance to Vpp (approximately 250
K ohm.)

|
E2

Appendix A: The 65C02 Microprocessor




NCR65C02
= ADDRESSING MODES

Fifteen addressing modes are available to the user of the
NCRB5C02 microprocessor. The addressing modes are
described in the following paragraphs:

Implied Addressing [Implied]

In the implied addressing mode, the address containing
the operand is implicitly stated in the operation code of
the instruction.

Accumulator Addressing [Accum]

This form of addressing is represented with a one byte
instruction and implies an operation on the accumu-
lator.

Immediate Addressing [Immediate]

With immediate addressing, the operand is contained in
the second byte of the instruction; no further memory
addressing is required.

Absolute Addressing [Absolute]

For absolute addressing, the second byte of the instruc-
tion specifies the eight low-order bits of the effective
address, while the third byte specifies the eight high-order
bits. Therefore, this addressing mode allows access to the
total 64K bytes of addressable memory,

Zero Page Addressing [Zero Pagel

Zero page addressing allows shorter code and execution
times by only fetching the second byte of the instruction
and assuming a zero high address byte. The careful use
of zero page addressing can result in significant increase
in code efficiency.

Absolute Indexed Addressing [ABS, X or ABS, Y]
Absolute indexed addressing is used in conjunction with
X or Y index register and is referred to as ""Absolute, X,”"
and "‘Absolute, Y." The effective address is formed by
adding the contents of X or Y to the address contained
in the second and third bytes of the instruction. This
mode allows the index register to contain the index or
count value and the instruction to contain the base
address. This type of indexing allows any location refer-
encing and the index to modify multiple fields, resulting
in reduced coding and execution time.

Zero Page Indexed Addressing [ZPG, X or ZPG, Y]

Zero page absolute addressing is used in conjunction
with the index register and is referred to as “Zero Page,
X" or “Zero Page, Y."" The effective address is calculated
by adding the second byte to the contents of the index
register. Since this is a form of ""Zero Page’” addressing,
the content of the second byte references a location in
page zero. Additionally, due to the ““Zero Page” address-
ing nature of this mode, no carry is added to the high-
order eight bits of memory, and crossing of page boun-
daries does not occur,

Relative Addressing [Relative]
Relative addressing is used only with branch instructions;

Data Sheet

it establishes a destination for the conditional branch.
The second byte of the instruction becomes the operand
which is an “Offset” added to the contents of the pro-
gram counter when the counter is set at the next in-
struction. The range of the offset is —128 to +127
bytes from the next instruction.

Zero Page Indexed Indirect Addressing [{(IND, X)]

With zero page indexed indirect addres:ing (usually re-
ferred to as indirect X) the second byte of the instruction
is added to the contents of the X index register; the
carry is discarded. The result of this addition points to a
memory location on page zero whose contents is the low-
order eight bits of the effective address. The next mem-
ory location in page zero contains the high-order eight
bits of the effective address. Both memory locations
specifying the high- and low-order bytes of the effective
address must be in page zero.

*Absolute Indexed Indirect Addressing [ABS(IND, X)]
(Jump Instruction Only)

With absolute indexed indirect addressing the contents of
the second and third instruction bytes are added to the
X register. The result of this addition, points to a memory
location containing the lower-order eight bits of the
effective address. The next memory location contains
the higher-order eight bits of the effective address.

Indirect Indexed Addressing [(IND), Y]

This form of addressing is usually referred to as Indirect,
Y. The second byte of the instruction points to a mem-
ory location in page zero. The contents of this memory
location are added to the contents of the Y index regis-
ter, the result being the low-order eight bits of the effec-
tive address. The carry from this addition is added to the
contents of the next page zero memory location, the
result being the high-order eight bits of the effective
address.

*Zero Page Indirect Addressing ((ZPG)]
in the zero page indirect addressing mode, the second
byte of the instruction points to a memory location on
page zero containing the low-order byte of the effective
address. The next location on page zero contains the
high-order byte of the effective address.

Absoclute Indirect Addressing [(ABS)]

(Jump Instruction Only)

The second byte of the instruction contains the low-order
eight bits of a memory location. The high-order eight
bits of that memory location is contained in the third
byte of the instruction. The contents of the fully speci-
fied memory location is the low-order byte of the effec-
tive address. The next memory location contains the
high-order byte of the effective address which is loaded
into the 16 bit program counter.

NOTE: * = New Address Modes




= SIGNAL DESCRIPTION

Address Bus (A0-A15)
AD-A15 forms a 16-bit address bus for memory and 1/0
exchanges on the data bus. The output of each address
line is TTL compatible, capable of driving one standard
TTL load and 130pF.

Clocks (dg, @4, and G3)

P is a TTL level input that is used to generate the inter-
nal clocks in the 6502. Two full level output clocks are
generated by the 6502. The @2 clock output is in phase
with @p. The @1 output pin is 180° out of phase with @g.
(See timing diagram.)

Data Bus (D0-D7)

The data lines (D0-D7) constitute an 8-bit bidirectional
data bus used for data exchanges to and from the device
and peripherals, The outputs are three-state buffers
capable of driving one TTL load and 130 pF.

Interrupt Request (IRQ)

This TTL compatible input requests that an interrupt
sequence begin within the microprocessor. The TRQ is
sampled during @2 operation; if the interrupt flag in the
processor status register is zero, the current instruction
is completed and the interrupt sequence begins during
@ 1. The program counter and processor status register
are stored in the stack. The microprocessor will then set
the interrupt mask flag high so that no further IRQs
may occur, At the end of this cycle, the program counter
low will be loaded from address FFFE, and program
counter high from location FFFF, transferring program
control to the memory vector located at these addresses.
The RDY signal must be in the high state for any inter-
rupt to be tecognized. A 3K ohm external resistor should
be used for proper wire OR operation,

Memory Lock (ML)

In a multiprocessor system, the ML output indicates the
need to defer the rearbitration of the next bus cycle to
ensure the integrity of read-modify-write instructions.
ML goes low during ASL, DEC, INC, LSR, ROL, ROR,
TRB, TSB memory referencing instructions. This signal
is low for the modify and write cycles.

Non-Maskable Interrupt (NMI)

A negative-going edge on this input requests that a non-
maskable interrupt sequence be generated within the
microprocessor. The NMI is sampled during @2; the cur-
rent instruction is completed and the interrupt sequence
begins during @1. The program counter is loaded with
the interrupt vector from locations FFFA (low byte)
and FFFB (high byte), thereby transferring program con-
trol to the non-maskable interrupt routine.

Note: Since this interrupt is non-maskable, another NMI
can occur before the first is finished. Care should be taken
when using NMI to avoid this.

NCR65C02

Ready (RDY)

This input allows the user to single-cycle the micropro-
cessor on all cycles including write cycles. A negative
transition to the low state, during or coincident with
phase one (@1), will halt the microprocessor with the out-
put address lines reflecting the current address being
fetched. This condition will remain through a subsequent
phase two (@2} in which the ready signal is low, This fea-
ture allows microprocessor interfacing with low-speed
memory as well as direct memory access (DMA),

Reset (RES)

This input is used to reset the microprocessor. Reset
must be held low for at least two clock cycles after
VDD reaches operating voltage from a power down, A
positive transistion on this pin will then cause an initiali-
zation sequence to begin. Likewise, after the system has
been operating, a low on this line of at least two cycles
will cease microprocessing activity, followed by initial-
ization after the positive edge on RES.

When a positive edge is detected, there is an initialization
sequence lasting six clock cycles. Then the interrupt
mask flag is set, the decimal mode is cleared, and the pro-
gram counter is loaded with the restart vector from loca-
tions FFFC (low byte) and FFFD (high byte). This is
the start location for program control. This input should
be high in normal operation.

Read/Write (R/W)

This signal is normally in the high state indicating that
the microprocessor is reading data from memory or |/O
bus. In the low state the data bus has valid data from the
microprocessor to be stored at the addressed memory
location.

Set Overflow (SO)

A negative transition on this line sets the overflow bit in
the status code register. The signal is sampled on the trail-
ing edge of @1.

Synchronize (§YNC)

This output line is provided to identify those cycles dur-
ing which the microprocessor is doing an OP CODE
fetch. The SYNC line goes high during @1 of an OP CODE
fetch and stays high for the remainder of that cycle. If
the RDY line is pulled low during the @1 clock pulse in
which SYNC went high, the processor will stop in its
current state and will remain in the state until the RDY
line goes high. In this manner, the SYNC signal can be
used to control RDY to cause single instruction execu-
tion.

214 Appendix A: The 65C02 Microprocessor




= INSTRUCTION SET — ALPHABETICAL SEQUENCE
. ADC Add Memory to Accumulator with Carry LDX Load Index X with Memory
AND "AND" Memory with Accumulator LDY Load Index Y with Memory
ASL Shift One Bit Left LSR Shift One Bit Right
BCC Branch on Carry Clear NOP No Operation
BCS Branch on Carry Set ORA "OR" Memory with Accumulator
BEQ Branch on Result Zero PHA Push Accumulator on Stack
BIT Test Memory Bits with Accumulator PHP  Push Processor Status on Stack
BMI  Branch on Result Minus *PHX Push Index X on Stack
BNE Branch on Result not Zero * PHY Push Index Y on Stack
BPL Branch on Result Plus PLA Pull Accumulator from Stack
*BRA Branch Always PLP  Pull Processor Status from Stack
BRK Force Break *PLX Pull Index X from Stack
BVC Branch on Overflow Clear *PLY Pull Index Y from Stack
BVS Branch on Overfiow Set ROL Rotate One Bit Left
CLC Clear Carry Flag ROR Rotate One Bit Right
CLD Clear Decimal Mode RTI Return from Interrupt
CLI  Clear InterruptDisable Bit RTS Return from Subroutine
CLV Clear Overflow Flag SBC Subtract Memory from Accumulator with Borrow
CMP Compare Memory and Accumulator SEC Set Carry Flag
CPX Compare Memory and Index X SED Set Decimal Mode
CPY Compare Memory and Index Y SEl  Set Interrupt Disable Bit
*DEA Decrement Accumulator STA, Store Accumulator in Memory
DEC Decrement by One STX Store Index X in Memory
DEX Decrement index X by One STY Store Index Y in Memory
DEY Decrement Iindex Y by One *STZ Store Zero in Memory
EOR "Exclusive-or”’ Memory with Accumulator TAX Transfer Accumulator to Index X
*INA  Increment Accumulator TAY Transfer Accumulator to Index Y
INC  Increment by One *TRB Test and Reset Memory Bits with Accumulator
INX Increment Index X by One *TSB Test and Set Memory Bits with Accumulator
INY Increment Index Y by One TSX Transfer Stack Pointer to Index X
JMP  Jump to New Location TXA Transfer Index X to Accumulator
JSR  Jump to New Location Saving Return Address TXS Transfer Index X to Stack Pointer
LDA Load Accumulator with Memory TYA Transfer Index Y to Accumulator
Note: * = New Instruction
B - micROPROCESSOR OP CODE TABLE
S
D 0 1 2 3 4 5 6 7 8 9 A B ¢ D E F
Q BRK | ORA TSB* | ORA ASL PHP ORA | ASL TSB*® ORA ASL 0
ind, X zpg Zpg zpg imm A abs abs abs
1 BPL ORA [ORA*T TRB® | ORA ASL CLC ORA INA® TRB* ORA ASL 1
rel ind, Y (zpg) 2pg zpg, X | zpg, X abs, Y A abs abs, X | abs, X
2 JSR AND BIT AND | ROL PLP AND | ROL BIT AND ROL 2
abs ind, X zpg 2pg zpg imm A abs abs abs
3 BMI AND |AND"T BIT* | AND | ROL SEC | AND |DEA" BIT*t AND | ROL 3
rel ind, ¥ {zpg} zpg, X | zpg, X | zpg, X abs, Y A abs, X abs, X | abs, X
4 RTI EOR EOR LSR PHA EOR | LSR JMP EOR LSR 4
ind, X zpg zpg imm A abs abs abs
5 BVC EOR |EOR"t EOR LSR cLl EOR | PHY* EOR LSR 5
rel ind, ¥ | {zpg) zpg, X | zpg, X abs, Y abs, X | abs, X
6 RTS ADC sTZ* ADC ROR PLA ADC | ROR JMP ADC ROR 6
ind, X zpg zpg zpg imm A (abs) abs abs
7 BVS ADC |aDpcC*t §TZ* | ADC ROR SEI ADC | PLY* Jmpet ADC | ROR 7
rel ind, Y | (zpg) zpg, X | zpg, X | zpg, X abs, Y abs lind,X)| abs, X | abs, X
8 BRA® STA STY STA STX DEY BIT TXA STY STA STX B
rel ind, X zpg 2pg zpg mm abs abs abs
9 BCC STA |STA°*t STY STA 5TX TYA STA | TXS sTZ* STA sTZ" 9
rel ind, ¥ (zpg) zpg, X | zpg, X | zpg, Y abs, Y abs abs, X | abs, X
A Loy LDA LDX LDY LDA LDX TAY LDA | TAX Loy LDA LDX A
imm ind, X imm zpg zpg zpg imm abs abs abs
B BCS LbA [LDA*t LDY | LDA LDX CcLv LDA | TSX Loy LDA LDX B
rel ind, ¥ (zpg) zpg, X | zpg, X | zpg. Y abs, Y abs, X |abs, X |abs Y
c CPY | CMP CPY CMmP DEC INY CMP | DEX CPY CMP DEC c
imm ind, X Zpg zpg zpg imm abs abs abs
D | BNE | CMP [CMP-T CMmP DEC CLD CMP | PHX* CMP DEC D
rel ind, ¥ | lzpg) 2pg, X | zpg, X abs, Y abs, X | abs, X
E CPX s8C CPX | SBC INC INX SBC | NOP CPX SBC INC E
mm ind, X zpg zpg zpg imm abs abs abs
F BEQ | sBC sec*t S8C INC SED SBC | PLX* SBC INC F
rel | ind, Y | (zpg) zpg, X | 2pg, X abs, Y abs, X | abs, X
0 1 2 3 4 5 6 7 8 9 A B c D E F
. Note: * = New OP Codes
MNote: T = New Address Modes
l Data Sheet 215




= OPERATIONAL CODES, EXECUTION TIME, AND MEMORY
IMME-| ABSO- | ZERO - | uno, [1iNo), RELA- ABS PROCESSOR
DIATE| LUTE | PAGE [ACCUMPLIED| X) ¥ |2PG, X|2PG, ¥|ABS, X | ABS, Y| TIVE | (ABS) [(IND, X} IZPG) | STATUS CODES
76543210
MNE OPERATION O] n| 4 OP| n[#{0P| of #OP | n|#| 0P|n [#0P |n| #lOP | n[# 0P |n|#|0P|n |# 0P | [#|oP|n [#foP|n| MOP[n|#l0P|n [e|or|s s V" B B T2 C|MNe
ADC|A+M+C*A 11.3)| 68| 2|2|6D|4|3|65|3(2 61/6(2|71|5(2|78|4|2 70|4|3|79(4|3 72(52|n v . . . . ZclaDc
AND[A AM=*A (1) | 2812|2{20{4|3{25|3]2 21 6/2|31|52| 35|42 30|a/3|38|a 3 32|52 z
ASL [D-——B-0 (1} OE|6(3|06(5(2|0a (21 16(6/2] 1€(6|3
BCC |Branch if C=0 2 902|2
BCS [Branch if €=1 2 80)2|2
BEQ |Branch if Z=1 @ Fo|2|2
BIT [AAM (4,5)| 89| 2|2(2¢ |4|3{24|3|2 34|42 3c|a|3
BMI |Branch if N=1 @ 3022 .
BNE |Branch it Z=0 @ 00|2(2
BPL | Branch f N=0 @ 10/2(2,
BRA |Branch Always 2} 80§2|2
BRK | Break 00(7)1
BVC | Branch f V=0 12 50|22
BVS |Branch if V=1 2 70(2[2
cLe [osc 1821
cLofo-o o8|2r
CLl [o=1 58|21
cLv |oev 88[2/1 . N
CMP A - M 1) | caf2|2{cD{4|3f cs| 3j2 c1fs|2|o1|5|2|084|2 o0{4|3|Dg|4 3 D2(5(2|N . Z clcme
CPX |X - M £0|2|2|EC|4|3|E4|32] N Zz clepx
cry |y m co|2|2{ccla|3fca|al2 N z c|cPy
DEA|A.1+A 3a(2)1 N z .|DEA
OEC M- 1+M 1 CE|6|3|ce|s|2 D8|6|2 DE|6|3 N z .|DEC
DEX|X-1+X CAl2(1 N Z . |DEX
DEY|Y.1+Y 88|21 N . Z .|DEY
EOR|AVM=A 49|2(2 40| 4|3 45(3]2 41(s(2/51|s]2{s8)a|2 50(4(3{5a(a(a 52(5(2(N . Z .[Eom
INA |A+ 18 1a(2(1 N Zz .|INa
INC [M+1+M m EE 6|3/ E6|5]2] 6|62 FE[6]3 N . Z .|Inc
INX X+ 12x E8f2)1 N z . |INx
INY [Ye1ev c8j2)1 N i% z |INY
IMP [Jump 1o new loc ac|3f3 sclefslzclefa] | [[. . . .- IMP
JSR [Jump Subroutine 2063 . .. |usm
LDA|M A 11| asl2|2/ap|4]3 A5 3|2 A1i6/2/81(5|2(B5|4|2 80|4|3(Bg|a|3 B2(52(N . z fLoa
LDX M+ x 111 | A2|2|2|AE|4|3|a8{3|2 B6(4(2 BE|4|3 N .z .|Lbx
LDY[M=Y i1} | apj2|2|ac|a|3la4f3|2 B84/4]2] BC|a|3 N Z |Loy
LSR o= _@-E (1) 4E (6|3 46(5(2[4a]2[1 56(6(2 SE|6[3 0. Z c|LsR
NOP [PC+12PC G LT O T O T O (O O O I O O O 1 s NOP
ORA/AVM=A 1) |0a|2|2on|a|3]0s|3|2 o01/6/2[11]5]2| 15(42 10|a[3]19fa|3 12{s(2|n ... Z .|ORA
PHA |A*M, 5175 148 (3}1 PHA
PHP [P+M, 5-1+5 08131 PHP
PHX X *M; §-145 Dala)r L. PHX
PHY |Y M § 195 ELAEI ! oy
PLA [§+14§ My+A 68|41 N .z |rLa
PLP [S+1+5 M *P 2841 NV 1D ZClPLP
PLX |S+1+5 Mg+ X FAl4 1 N LN
PLY [S+1+5 M, *Y TA 411 N . Z.|PLY
ROL| G5 n 2E|6/326(5/2(24 [2]1 36(6/2 3E(6[3 N z gROL
ROR|CEL m 6E [6(3/66(5[2/64 [2]1 76(6/2 7E(6[3 N . z gAOR
RT1 |Return from Inter 40161 NV . 1D 1 ZdRTI
RTS |Return from Subr. 806 1 i g ATS
SBC (A M-Tea (1.3 |E9|2[2}en|a|3|Es |32 E1(6(2|F1]5|2{Fs|a|2] Fol4[3{Folala F2|s[2|n v . Z gsac
SEC [1+C 3821 . 1|sEc
SED |1+D FB (21 1 SED
SEI |11 78 (2|1 TR P T
STA (A<M 80 |4|3(85 |32 81/6/2/91 |6|2]95]4)2 EIEEEEEE 92|52 .|sTA
STX [X*M 8€ [43]86(3]2 9642 1 O T STX
STY [Y=Mm 8C|431843(2 94 |a|2 Fan . Ty
STZ |00 *M 9C|4/3164)3(2 74|aj2 9€ |5(3 : i | STR
TAX|A=X lajz 1 N L. Z.|TAX
TAY A=Y AB[211 N 2. TAY
TRB|AAM*M i) 1C|6(3]14(5(2 ik . 2.|TRB
TSB AV MM 4] |oc |6(3j04a|5|2 E Z.|Ts8
TSX |8+x 82 |1 N z . |Tsx
TXA|X*+A BAZ 1 N . Z.|Txa
TX5 X +5 94 (2 |1 5 TXS
TYA[Y A 9812 1 N 2. [rya
Notes:
1. Add 1 to “n" if page boundary is crossed. X Index X + Add n No. Cycles
2 if branch occurs to same page. Y iIndex Y — Subtract # No. Bytes
if branch occurs to different page. A Accumulator A And Mg Memory bit 8
3. Add 1 to “n" if decimal mode. M Memory per effective address vV Or M7 Memory bit 7
4. V bit equals memory bit 6 prior to execution. Ms Memory per stack pointer A Exclusive or
N bit equals memory bit 7 prior to execution.
*5, The immediate addressing mode of the BIT instruction leaves bits 6 & 7
{V & N) in the Processor Status Code Register unchanged.
216 Appendix A: The 65C02 Microprocessor .




Appendix E'S

Directory of Built-in Subroutines




AWarning

Here is a list of useful subroutines in the Apple Ile’s Monitor. To use these
subroutines from machine-language programs, store data into the specified
memory locations or microprocessor registers as required by the subroutine
and execute a JSR to the subroutine’s starting address. After the subroutine
performs its function, it returns with the 65C02’s registers changed as
described.

| For the sake of compatibility between the Apple II Plus, Apple Ilc, and
the Apple Ile, do not jump into the middle of Monitor subroutines. The
starting addresses are the same for all models of the Apple II, but the
actual code is different.

BASICIN  Read the keyboard $C305

When the 80-column firmware is active, BASICIN is used instead of KEYIN.
BASICIN operates like KEYIN except that it displays a solid, non-blinking
cursor instead of a blinking checkerboard cursor.

BASICOUT Output to screen $C307

When the 80-column firmware is active, BASICOUT is used instead of
COUT1. BASICOUT displays the character in the accumulator on the
Apple Ile’s screen at the current output cursor position and advances the
output cursor. It places the character using the setting of the
Normal/Inverse location. It handles control codes; see Table 3-3b.
BASICOUT returns with all registers intact.

BELL Output a bell character $FF3A
BELL writes a bell (Control-G) character to the current output device. It
leaves the accumulator holding $87.

BELL1 Sends a beep to the speaker $FBDD
BELLI generates a 1 kHz tone in the Apple Ile's speaker for 0.1 second. It
scrambles the A and X registers.

CLREOL  Clear to end of line $FCIC

CLREOL clears a text line from the cursor position to the right edge of the
window. CLREOL destroys the contents of A and Y.

Appendix B: Directory of Built-in Subroutines




CLEOLZ Clear to end of line $FCIE

CLEQLZ clears a text line to the right edge of the window, starting at the
location given by base address BASL, which is indexed by the contents of
the Y register. CLEOLZ destroys the contents of A and Y.

CLREOP  Clear to end of window $FC42
CLREOP clears the text window from the cursor position to the bottom of
the window. CLREOP destroys the contents of A and Y.

CLRSCR Clear the low-resolution screen $F832

CLRSCR clears the low-resolution graphics display to black. If you call
CLRSCR while the video display is in text mode, it fills the screen with
inverse-mode at-sign (@) characters. CLRSCR destroys the contents of A
andY.

CLRTOP  Clear the low-resolution screen $F836
CLRTOP is the same as CLRSCR (above), except that it clears only the top
40 rows of the low-resolution display.

couT Output a character $FDED

COUT calls the current character output subroutine. The character to be
output should be in the accumulator. COUT calls the subroutine whose
address is stored in CSW (locations $36 and $37), which is usually one of
the standard character output subroutines, COUT1 or BASICOUT.

COUT1 Qutput to screen $FDF0

COUT1 displays the character in the accumulator on the Apple Ile’s screen
at the current output cursor position and advances the output cursor. It
places the character using the setting of the Normal/Inverse location. It
handles the codes for carriage return, linefeed, backspace, and bell. It
returns with all registers intact.

CROUT Generate a carriage return character $FDSE

CROUT sends a carriage return character to the current output device.

CROUT1  Generate carriage return, clear rest of line $FD8B

CROUT1 clears the screen from the current cursor position to the edge of
the text window, then calls CROUT.

Appendix B: Directory of Built-in Subroutines 219




220

GETLN Get an input line with prompt $FD6A

GETLN is the standard input subroutine for entire lines of characters, as
described in Chapter 8. Your program calls GETLN with the prompt
character in location $33; GETLN returns with the input line in the input
buffer (beginning at location $0200) and the X register holding the length of
the input line.

GETLNZ  Getaninput line $FD6T
GETLNZ is an alternate entry point for GETLN that sends a carriage return
to the standard output, then continues into GETLN.

GETLN1 Get an input line, no prompt $FD6F

GETLNI is an alternate entry point for GETLN that does not issue a prompt
before it accepts the input line. If, however, the user cancels the input line,
either with too many backspaces or with a then GETLN1
will issue the contents of location $33 as a prompt when it gets another line.

HLINE Draw a horizontal line of blocks $F819

HLINE draws a horizontal line of blocks of the color set by SETCOL on the
low-resolution graphics display. Call HLINE with the vertical coordinate of
the line in the accumulator, the leftmost horizontal coordinate in the

Y register, and the rightmost horizontal coordinate in location $2C. HLINE
returns with A and Y scrambled, X intact.

HOME Home cursor and clear $FC58
HOME clears the display and puts the cursor in the home position: the
upper-left corner of the screen.

IOREST  Restore all registers $FF3F
IOREST loads the 65C02’s internal registers with the contents of memory
locations $45 through $49.

IOSAVE  Save all registers SFF4A

IOSAVE stores the contents of the 65C02's internal registers in locations $45
through $49 in the order A, X, Y, P, S. The contents of A and X are changed
and the decimal mode is cleared.

Appendix B: Directory of Built-in Subroutines




KEYIN Read the keyboard $FD1B

KEYIN is the keyboard input subroutine. It reads the Apple Ile’s keyboard,
waits for a keypress, and randomizes the random number seed at $4E-$4F.
When a key is pressed, KEYIN removes the blinking cursor from the display
and returns with the keycode in the accumulator. KEYIN is described in
Chapter 3.

MOVE Move a block of memory $FE2C

MOVE copies the contents of memory from one range of locations to
another. This subroutine is the same as the MOVE command in the Monitor,
except that it takes its arguments from pairs of locations in memory,
low-byte first. The destination address must be in A4 ($42-$43), the starting
source address in A1 ($3C-83D), and the ending source address in A2
($3E-$3F) when your program calls MOVE. Register Y must contain $00
when your program calls MOVE.

NEXTCOL Increment color by 3 $F85F
NEXTCOL adds 3 to the current color (set by SETCOL) used for
low-resolution graphics.

PLOT Plot on the low-resolution screen $F800

PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen. The block's vertical position is passed in the
accumulator, its horizontal position in the Y register. PLOT returns with the
accumulator scrambled, but X and Y intact.

PRBLNK  Print three spaces $F948
PRBLNK outputs three blank spaces to the standard output device. On
return, the accumulator usually contains $A0, the X register contains 0.
PRBL2 Print many blank spaces $F94A

PRBL2 outputs from 1 to 256 blanks to the standard output device. Upon
entry, the X register should contain the number of blanks to be output. If
X=$00, then PRBL2 will output 256 blanks.

PRBYTE  Print a hexadecimal byte SFDDA

PRBYTE outputs the contents of the accumulator in hexadecimal on the
current output device. The contents of the accumulator are scrambled.

Appendix B: Directory of Built-in Subroutines 221




PREAD Read a hand control $FBIE

PREAD returns a number that represents the position of a hand control. You
pass the number of the hand control in the X register. If this number is not
valid (not equal to 0, 1, 2, or 3), strange things may happen. PREAD returns
with a number from $00 to $FF in the Y register. The accumulator is
scrambled.

PRERR Print ERR $FF2D
PRERR sends the word FRE, followed by a bell character, to the standard
output device. On return, the accumulator is scrambled.

PRHEX Print a hexadecimal digit $FDE3
PRHEX prints the lower nibble of the accumulator as a single hexadecimal
digit. On return, the contents of the accumulator are scrambled.
PRNTAX  Print A and X in hexadecimal $F941

PRNTAX prints the contents of the A and X registers as a four-digit
hexadecimal value. The accumulator contains the first byte output, the X
register contains the second. On return, the contents of the accumulator are
scrambled.

RDCHAR  Get an input character or escape code $FD35

RDCHAR is an alternate input subroutine that gets characters from the
standard input subroutine, and also interprets the escape codes listed in
Chapter 3.

RDKEY Get an input character $FDOC

RDKEY is the character input subroutine. It places a blinking cursor on the
display at the cursor position and jumps to the subroutine whose address is
stored in KSW (locations $38 and $39), usually the standard input
subroutine KEYIN, which returns with a character in the accumulator.

READ Read a record from a cassette $FEFD

READ reads a series of tones at the cassette input port, converts them to
data bytes, and stores the data in a specified range of memory locations.
Before calling READ, the address of the first byte must be in Al ($3C-$3D)
and the address of the last byte must be in A2 ($3E-$3F).

222 Appendix B: Directory of Built-in Subroutines




READ keeps a running exclusive-OR of the data bytes in CHKSUM ($2E).
When the last memory location has been filled, READ reads one more byte
and compares it with CHKSUM. If they are equal, READ sends out a beep
and returns; if not, it sends the string ZRR through COUT, sends the beep,
and returns.

SCRN Read the low-resolution graphics screen $F871

SCRN returns the color value of a single block on the Jow-resolution
graphics display. Call it with the vertical position of the block in the
accumulator and the horizontal position in the Y register. Call it as you
would call PLOT (above). The color of the block will be returned in the
accumulator. No other registers are changed.

SETCOL  Set low-resolution graphics color $F864

SETCOL sets the color used for plotting in low-resolution graphics to the
value passed in the accurnulator. The colors and their values are listed in
Table 2-6.

SETINV Set inverse mode SFE80

SETINV sets the dislay format to inverse. COUT1 will then display all
output characters as black dots on a white background. The Y register is set
to $3F, all others are unchanged.

SETNORM Set normal mode $FE84

SETNORM sets the display format to normal. COUT1 will then display all
output characters as white dots on a black background. On return, the
Y register is set to $FF, all others are unchanged.

VERIFY Compare two blocks of memory $FE36

VERIFY compares the contents of one range of memory to another. This
subroutine is the same as the VERIFY command in the Monitor, except it
takes its arguments from pairs of locations in memory, low-byte first. The
destination address must be in A4 ($42-843), the starting source address in
A1 ($3C-$3D), and the ending source address in A2 ($3E-$3F) when your
program calls VERIFY.

Appendix B: Directory of Built-in Subroutines 223




224

VLINE Draw a vertical line of blocks $F828

VLINE draws a vertical line of blocks of the color set by SETCOL on the
low-resolution display. You should call VLINE with the horizontal
coordinate of the line in the Y register, the top vertical coordinate in the
accumulator, and the bottom vertical coordinate in location $2D. VLINE will
return with the accumulator scrambled.

WAIT Delay $FCA8

WAIT delays for a specific amount of time, then returns to the program that
called it. The amount of delay is specified by the contents of the
accumulator. The delay is 1/2(26+27A+5A ~ 2) microseconds, where A is
the contents of the accumulator. WAIT returns with the accumulator
zeroed and the X and Y registers undisturbed.

WRITE Write a record on a cassette $FECD

WRITE converts the data in a range of memory to a series of tones at the
cassette output port. Before calling WRITE, the address of the first data
byte must be in Al ($3C-$3D) and the address of the last byte must be in A2
($3E-$3F). The subroutine writes a ten-second continuous tone as a header,
then writes the data followed by a one-byte checksum.

Appendix B: Directory of Built-in Subroutines




Appendi:a]

Apple II Family Differences




This appendix lists the differences among the Apple II Plus, the original and
the enhanced Apple Ile, and the Apple Ilc.

If you're trying to write software to run on more than one version of the
Apple II, this appendix will help you avoid unexpected problems of
incompatibility.

The differences are listed here in approximately the order you are likely to
encounter them: obvious differences first, technical details later. Each entry
in the list includes references to the chapters in this manual where the item
is described.

Keyboard

T e T et ]
The Apple Ile and Apple IIc have a full 62-key uppercase and lowercase
keyboard. The keyboard includes fully-operational and

keys. It also includes four directional arrow keys for moving
the cursor. Chapter 2 includes a description of the keyboard. The
cursor-motion keys are described in Chapter 3.

Apple Keys

The keyboard of the Apple Ile and Apple Ilc have two keys marked with the
Apple logo. These keys, called the Open-Apple key ([&]) and Solid-Apple
key ([@]), are used with the key to select special reset functions.
They are connected to the buttons on the hand controls, so they can be used
for special functions in programs.

The Apple I and the Apple II Plus do not have Apple keys.

Character Sets

226

The Apple Ile and Apple Ilc can display the full ASCII character set,
uppercase and lowercase. For compatibility with older Apple II's, the
standard display character set includes flashing uppercase instead of
inverse-format lowercase; you can also switch to an alternate character set
with inverse lowercase and uppercase, but no flashing. Chapter 2 includes a
description of the display character sets. Chapter 3 tells you how to switch
display formats.

Appendix C: Apple Il Family Differences




The Apple lic and the enhanced Apple Ile include a set of “graphic” text
characters, called MouseText characters, that replace some of the inverse
uppercase characters in the alternate character set of the original Apple Ile.
MouseText characters are described in Chapter 2.

80-Column Display

[ A i o R e e O e e e ) [ ]
With the addition of an 80-column text card, the Apple Ile can display 80
columns of text. The 80-column display is completely compatible with both
graphics modes—you can even use it in mixed mode. (If you prefer, you can
use an old-style 80-column card in an expansion slot instead.) Chapter 2
includes a description of the 80-column display.

The Apple Ilc has a built-in extended 80-column card.

Escape Codes and Control Characters

P St e e P A P e i e S o i S i SR e
On the Apple Ile and Apple Ilc, the display features mentioned above (and
many others not mentioned) can be controlled from the keyboard by escape
sequences and from programs by control characters. Chapter 3 includes
descriptions of those escape codes and control characters.

Built-in Language Card

The 16K bytes of RAM you add to the Apple II Plus by installing the
Language Card is built into the Apple Ile and Apple Ilc, giving the Apple Ile
a standard memaory size of 64K bytes. (The Apple Ilc has a built-in extended
80-column text card as well, giving it a standard memory size of 128K
bytes.) In the Apple Ile, this 16K-byte block of memory is called the
bank-switched memory. It is described in Chapter 4.

Built-in Language Card 227




Auxiliary Memory

By installing the Apple Ile Extended 80-Coluran Text Card, you can add an
alternate 64K bytes of RAM to the Apple Ile. Chapter 4 tells you how to use
the additional memory. (The Extended 80-Column Text Card also provides
the 80-column display option.)

The Apple Ilc has a built-in extended 80-column text card.

Auxiliary Slot

In addition to the expansion slots on the Apple II Plus, the Apple Ile has a
special slot that is used either for the 80-Column Text Card or for the
Extended 80-Column Text Card. This slot is identified in Chapter 1 and
described in Chapter 7.

The Apple Ilc has the functions of the auxiliary slot built in.

Back Panel and Connectors

R A T T | Dt Bt B P L P et i B S ] | A I e =
The Apple Ile has a metal back panel with space for several D-type
connectors. Each peripheral card you add comes with a connector that you
install in the back panel. Chapter 1 includes a description of the back panel;
for details, see the installation instructions supplied with the peripheral
cards.

The Apple Ilc back panel has seven built-in connectors.

Soft Switches

e s e e e e e =
The display and memory features of the Apple Ile and the Apple Ilc are
controlled by soft switches like the ones on the Apple II Plus. On the

Apple [le and the Apple Ilc, programs can also read the settings of the soft
switches. Chapter 2 describes the soft switches that control the display
features, and Chapter 4 describes the soft switches that control the memory
features.

Appendix C: Apple Il Family Differences




Built-in Self-Test

The Apple Ile has built-in firmware that includes a self-test routine. The
self-test is intended primarily for testing during manufacturing, but vou can
run it to be sure the Apple Ile is working correctly. The self-test is described
in Chapter 4.

The Apple Ilc also has built-in diagnostics.

Forced Reset

e T e e A PR g
Some programs qn the Apple II Plus take control of the reset function to
keep users from stopping the machine and copying the program. The

Apple Ile and Apple Ilc have a forced reset that writes over the program in
memory. By using the forced reset, you can restart the Apple Ile (or

Apple Ile) without turning power off and on and causing unnecessary stress
on the circuits. The forced reset is described in Chapter 4.

Interrupt Handling

Even though most application programs don't use interrupts, the Apple Ile
(and Apple Ilc) provide for interrupt-driven programs. For example, the
80-column firmware periodically enables interrupts while it is clearing the
display (normally a long time to have interrupts locked out). Interrupts are
discussed in Chapter 6.

Vertical Sync for Animators

et S s e e e R e e e e e e
Programs with animation on the Apple Ile and Apple Ilc can stay in step
with the display and avoid flickering objects in their displays. Chapter 7
includes a description of the video generation and the vertical sync.

Vertical Sync for Animators 229




Signature Byte

e T 05 e S | i RO
A program can find out whether it's running on an Apple Ile, Apple Ilc,
Apple 1II (in emulation mode), or on an older model Apple II by reading the
byte at location $FBB3 in the System Monitor. In the Apple Ile Monitor, this
byte’s value is $06; in the Autostart Monitor (the standard Monitor on the
Apple IT Plus), its value is $EA. (Note: if you start up with DOS and switch
to Integer BASIC, the Autostart Monitor is active and the value at location
$FBB3is $EA, even on an Apple Ile.) Obviously, there are lots of other
locations that have different values in the different versions of the Monitor;
location $FBB3 was chosen because it will have the value $06 even in
future revisions of the Apple Ile Monitor,

Hardware Implementation

All of these features are described in
Chapter 7.

For more information about the Apple Ilc,
see the Apple Ilc Reference Manual.

I T e R T L - VN S O
The hardware implementation of the Apple Ile is radically different from
the Apple Il and Apple II Plus. Three of the more important differences are
o the custom ICs: the I0U and MMU

o the video hardware, which uses ROM to generate both text and graphics
o the peripheral data bus, which is fully buffered.

The Apple Ilc

o shares some of the custom ICs of the Apple Ile

o has some new ones all its own

o lacks the slots of the Apple Ile, replacing some of them with built-in I/0
ports.

Appendix C: Apple Il Family Differences




Appendix D

Operating Systems and Languages




This appendix is an overview of the characteristics of operating systems
and languages when run on the Apple Ile. It is not intended to be a full
account. For more information, refer to the manuals that are provided with
each product.

Operating Systems

EeE==—————mst ==y g proeos s = 0 e e e e R
This section discusses the operating systems that can be used with the
Apple [le.

ProDOS

=]

ProDOS is the preferred disk operating system for the Apple Ile. It supports
interrupts, startup from drives other than a Disk II, and all other hardware
and firmware features of the Apple Ile.

DOS 3.3

===

The Apple Ile works with DOS 3.3. The Apple Ile can also access DOS 3.2
disks by using the BASICS disk. However, neither version of DOS takes full
advantage of the features of the Apple Ile. DOS support is provided only for
the sake of Apple II series compatibility,

Pascal Operating System
T T - P T L s S |

The Apple 11 Pascal operating system was developed from the UCSD Pascal
system from the University of California at San Diego. While it shares many
characteristics of that system, it has been extended by Apple in several
areas.

Pascal versions 1.2 and later support interrupts and all the hardware and
firmware features of the Apple Ile.

The Apple I Pascal system uses a disk format different than either ProDOS
or DOS 3.3.

Appendix D: Operating Systems and Languages




CP/M

EEE—

CP/M® is an operating system developed by Digital Research that runs on
either the Intel 8080 or Zilog Z80® microprocessors. This means that a
co-processor peripheral card, available from several manufacturers for the
Apple Ile, is required to run CP/M. Several versions of CP/M from 1.4
through 3.0 and later can be run on an Apple Ile with an appropriate
co-processor card.

Languages

An aid for assembly-language programming
is ProDOS Assembler Tools (A2ZW0013).

s i AT e e e e e e ]
This section discusses special techniques to use, and characteristics to be
aware of, when using Apple programming languages with the Apple lle.

Assembly Language
= Saecreor st i o P A |

Programs written in assembly language have the potential of extracting the
most speed and efficiency from your Apple Ile, but they also require the
most effort on your part.

Applesoft BASIC

e =]

The focus of the chapters in this manual is assembly language, and so most
addresses and values are given in hexadecimal notation. Appendix E in this
manual includes tables to help you convert from hexidecimal to the decimal
notation you will need for BASIC.

In BASIC, use a PEEK to read a location (instead of the LDA used in
assembly language), and a POKE (instead of STA) to write to a location. If
you read a hardware address from a BASIC program, you get a value
between 0 and 255. Bit 7 holds a place value of 128, so if a soft switch is on,
its value will be equal to or greater than 128; if the switch is off, the value
will be less than 128.

Integer BASIC

= —

Integer BASIC is not included in the Apple Ile firmware. If you want to run
it on your Apple Ile, you must use DOS 8.3 to load it in to the system.
ProDOS does not support Integer BASIC.

Languages 233




Pascal Language
=]

The Pascal language works on the Apple Ile under versions 1.1 and later of

the Pascal Operating System. However, for best performance, use Pascal 1.2
or a later version.

FORTRAN

e ey

FORTRAN works under version 1.1 of the Pascal Operating System which
does not detect or use certain Apple [le features, such as auxiliary memory.
Therefore, FORTRAN does not take advantage of these features.

234 Appendix D: Operating Systems and Languages




;&ppendix“E

Conversion Tables




This appendix briefly discusses bits and bytes and what they can represent.
It also contains conversion tables for hexadecimal to decimal and negative
decimal, for low-resolution display dot patterns, display color values, and a
number of 8-bit codes.

These tables are intended for convenient reference. This appendix is not
intended as a tutorial for the materials discussed. The brief section
introductions are for orientation only.

Bits and Bytes

236

et e e s s e e oo
This section discusses the relationships between bit values and their

position within a byte. The following are some rules of thumb regarding the
65C02 and 6502.

O A bitis a binary digit; it can be eithera O ora 1.

o A bit can be used to represent any two-way choice. Some choices that a
bit can represent in the Apple Ile are listed in Table E-1.

Table E-1. What a Bit Can Represent

Context Representing 0= 1=
Binary number  Place value 0 1 x that power of 2
Logic Condition False True
Any switch Position Off On
Any switch Position Clear*  Set
Serial transfer ~ Beginning Start Carrier (no information yet)
Serial transfer ~ Data Ovalue  1value
Serial transfer ~ Parity SPACE  MARK
Serial transfer ~ End Stop bit(s)
Serial transfer ~ Communication ~BREAK  Carrier
state
P reg. bit N Neg. result? No Yes
Preg. bit V Overflow? No Yes
P reg. bit B BRK command?  No Yes
Preg. bitD Decimal mode? ~ No Yes
Preg. bit I IRQ interrupts Enabled  Disabled (masked out)
Preg. bit Z Zero result? No Yes
P reg, bit C Carry required?  No Yes

* Sometimes ambiguously termed reset.

Appendix E: Conversion Tables




o Bits can also be combined in groups of any size to represent numbers.
Most of the commonly used sizes are multiples of four bits.

o Four bits comprise a nibble (sometimes spelled nybble).

o One nibble can represent any of 16 values. Each of these values is
assigned a number from 0 through 9 and (because our decimal system
has only ten of the sixteen digits we need) A through F.

o Eight bits (two nibbles) make a byte (Figure E-1).

Figure E-1. Bits, Nibbles, and Bytes

High Nibble Low Nibble

MSB LSB
7 6 5 4 3 2 1 0

$80  §40  $20 $10 08 04 $02 %01 Hexadecimal
128 64 32 16 8 4 2 1 Decimal

Binary Hex  Dec
0000 $00 0
0001 $01 1
0010 $02 2
0011 $03 3
0100 $04 4
0101 $05 b
0110 506 6
0111 507 7
1000 308 8
1001 $09 9
1010 $0A 10
1011 $0B 11
1100 $0C 12
1101 $0D 13
1110 $0E 14
1111 $0F 15

o One byte can represent any of 16 x 16 or 256 values. The value can be
specified by exactly two hexadecimal digits.

o Bits within a byte are numbered from bit 0 on the right to bit 7 on the left.

o The bit number is the same as the power of 2 that it represents, in a
manner completely analogous to the digits in a decimal number.

Bits and Bytes : 237




o One memory position in the Apple Ile contains one eight-bit byte of data.

o How byte values are interpreted depends on whether the byte is an
instruction in a language, part or all of an address, an ASCII code, or
some other form of data.

o Two bytes make a word. The sixteen bits of a word can represent any
one of 256 x 256 or 65536 different values.

o The 65C02 uses a 16-bit word to represent memory locations. It can
therefore distinguish among 65536 (64K) locations at any given time.

o A memory location is one byte of a 266-byte page. The low-order byte of
an address specifies this byte. The high-order byte specifies the memory
page the byte is on.

Hexadecimal and Decimal

e R R S R
Use Table E-2 for conversion of hexadecimal and decimal numbers.

Table E-2. Hexadecimal/Decimal Conversion

Digit $x000 $0x00 $00x0 $000x
F 61440 3840 240 16
E 57344 3684 224 14
D 53248 3328 208 13
C 49152 3072 192 12
B 45056 2816 176 11
A 40960 2560 160 10
9 36864 2304 144 9
8 32768 2048 128 8
7 28672 1792 112 7
6 24576 1536 96 6
5 20480 1280 80 b
4 16384 1024 64 4
3 12288 768 48 3
2 8192 b12 32 2
1 4096 266 16 1

Appendix E: Conversion Tables




To convert a hexadecimal number to a decimal number, find the decimal
numbers corresponding to the positions of each hexadecimal digit. Write
them down and add them up.

Examples:

$3C = ? $FD47 = 2

$30 = 48 $FOAP = 61449

$8C = 12 $ DP@ = 3328

________ $ 48 = 64
$ 7 = 7

$3C = 60 =

$FD47 = 64839

To convert a decimal number to hexadecimal, subtract from the decimal

number the largest decimal entry in the table that is less than the number,

Write down the hexadecimal digit (noting its place value) also. Now
subtract the largest decimal number in the table that is less than the
decimal remainder, and write down the next hexadecimal digit. Continue
until you have zero left. Add up the hexadecimal numbers.

Example:
16215 = ¢ ?
16215 - 12288 = 3927 12288 = $7008
3927 - 3848 = 87 3840 = $ FBO
87 - 80 = 7 88 = ¢ 5@
7 7 =% 7

Hexadecimal and Decimal

239



Hexadecimal and Negative Decimal .
S e P 50 SO o =0 SO L S~ S e O W ||

If a number is larger than decimal 32767, Applesoft BASIC allows and .

Integer BASIC requires that you use the negative-decimal equivalent of the

number. Table E-3 is set up to make it easy for you to convert a

hexadecimal number directly to a negative decimal number.

Table E-3. Hexadecimal to Negative Decimal Conversion

Digit $x000  $$0x00  $500x0  $$000x

F 0 0 0 -1
E -4096 -256 -16 -2
D -8192 -512 -32 -3
G -12288 -768 -48 -4
B -16384 -1024 -64 &
A -20480 -1280 -80 -6
8 -24576 -1536 -96 7
8 -28672 -1792 -112 -8
7 -2048 -128 -9
6 -2304 -144 -10
5 -2560 -160 -11
4 -2816 -176 -12
3 -3072 -192 -13
2 -3328 -208 -14
1 -3584 -224 -16
0 -3840 -240 -16

To perform this conversion, write down the four decimal numbers
corresponding to the four hexadecimal digits (zeros included). Then add
their values. The resulting number is the desired negative decimal number.

Example:
$Co18 = - ?

$Co@ep: -12288

$ fPP: - 38480
$ 18: - 224
$ B: = 16
$CO10 -16368
240 Appendix E: Conversion Tables




To convert a negative-decimal number to a positive decimal number, add it
to 65536. (This addition ends up looking like subtraction.)

Example:
-151 = + 2
65536 + (-151) = 65536 - 151 = 65385

To convert a negative-decimal number to a hexadecimal number, first
convert it to a positive decimal number, then use Table E-2.

Hexadecimal and Negative Decimal 241




Graphics Bits and Pieces .
S e s S s S s S R e T

Table E-4 is a quick guide to the hexadecimal values corresponding to 7-bit .
high-resolution patterns on the display screen. Since the bits are displayed

in reverse order, it takes some calculation to determine these values.
Table E-4 should make it easy.

Table E-4. Hexadecimal Values for High-Resolution Dot Patterns

Bits in Data Byte Bit Pattern x=0 x=1 Bit Pattern x=0 x=1 .
6is5l413l21110 x0000000 $00  $80 x0100000 $02  $82
- x0000001  $40  $CO X0100001  $42  $C2 .
X0000010  $20  SAD X0100010  $22  $A2
x0000011  $60  SEO x0100011  $62  SE2
x0000100  $10  $90 0100100 $12  $92 .
x0000101  $50 DO x0100101  $52  $D2
x0000110  $30  $BO X0100110  $32  $B2
o123 4f5)6]| x0000111 $70  SFO 0100111 $72  $F2 .
sbrtenlottos x0001000  $08  $88 x0101000  $0A  $8A
P x0001001  $48  $C8 x0101001  $4A  $CA
x0001010  $28  $A8 X0101010  $2A  $AA
x0001011  $68  $E8 x0101011  $6A  SEA -
x0001100  $18  $98 X0101100  $1A  $9A
x0001101  $58  $D8 X0101101  $5A  $DA
0001110  $38  $BS 0101110  $3A  $BA .
x0001111  $78  $F8 X0101111  $7A  $FA
x0010000  $04  $84 x0110000  $06  $86
x0010001  $44  $C4 x0110001  $46  $C6 .
x0010010  $24  $Ad 0110010  $26  $A6
x0010011 64  $E4 0110011  $66  $E6
x0010100  $14  $94 0110100  $16  $96 .
x0010101  $54  $D4 0110101  $56  $D6
x0010110  $34  $B4 x0110110  $36  $B6
x0010111  §74  §F4 x0110111 876  $F6
x0011000  $0C  $8C 0111000  SOE  $8E .
x0011001  $4C  $CC x0111001  $4E  $CE
X0011010  $2C  SAC x0111010  $2E  $AE
x0011011  $6C  $EC 0111011 $6E  $EE .
x0011100  $1C  $9C X0111100  $1E  $9E
X0011101  $5C  $DC 0111101 $58  $DE
x0011110  $3C  $BC X0111110  $3E  $BE .
x0011111  §7C  $FC x0111111  $7E  $FE
242 Appendix E: Conversion Tables .




The & represents bit 7. Zeros represent bits that are off: ones bits that are
on. Use the first hexadecimal value if bit 7 is to be off, and the second if it is
to be on.

For example, to get bit pattern 00101110, use $3A; for 10101110, use SBA.

Table E-4—Continued. Hexadecimal Values for High-Resolution Dot Patterns

Bit Pattern x=0 x=1 Bit Pattern x=0 x=1
x1000000 $01 $81 x1100000 $03 $83
x1000001 $41 $C1 x1100001 $43 $C3
x1000010 $21  $Al x1100010 $23  $A3
x1000011 $61 $E1 x1100011 $63 $E3
x1000100 $11 $91 x1100100 $13 $93
x1000101 $51 $D1 x1100101 $53 $D3
x1000110 $31  $BI x1100110 $33  $B3
x1000111 $71 $F1 x1100111 $73 $F3
x1001000 $09 $89 x1101000 $0B  $8B
x1001001 $49 $C9 x1101001 $4B $CB
x1001010 $29 $A9 x1101010 $2B $AB
x1001011 $69 $E9 x1101011 $6B $EB
x1001100 $19 $99 x1101100 $1B $9B
x1001101 $50 $D9 x1101101 $5B $DB
x1001110 $39 $BY x1101110 $3B $BB
x1001111 $79 SF9 x1101111 $7B $FB
x1010000 $05 $85 x1110000 $07 $87
x1010001 §45 $Ch x1110001 $47 $C7
x1010010 $25 $AB x1110010 §27 $AT
x1010011 $65 $E5 x1110011 $67 SET
x1010100 $15 $95 x1110100 $17 $97
x1010101 $55 $D5 x1110101 $57 $D7
x1010110 $35 $B5 x1110110 $37 $B7
x1010111 875 $F5 x1110111 $77 $F7
x1011000 $0D  $8D x1111000 $0F 58F
x1011001 $4D  $CD x1111001 $4F $CF
x1011010 $2D  $SAD x1111010 $2F SAF
x1011011 $6D  $ED x1111011 $6F $EF
x1011100 $ID  $9D x1111100 $1F $9F
x1011101 $D  $DD x1111101 $5F $DF
x1011110 $3D  $BD x1111110 $3F $BF
x1011111 $7D  §FD x1L11T11 $7F SFF
Graphics Bits and Pieces 243




Eight-Bit Code Conversions

Tables E-5 through E-12 show the entire ASCII character set twice: once
with the high bit off, and once with it on. Here is how to interpret these
tables.

o The Binary column has the 8-bit code for each ASCII character.

o The first 128 ASCII entries represent 7-bit ASCII codes plus a high-order
bit of 0 (SPACE parity or Pascal)—for example, 010010000 for the
letter . .

o The last 128 ASCII entries (from 128 through 255) represent 7-bit ASCII
codes plus a high-order bit of 1 (MARK parity or BASIC)—for example,
11001000 for the letter A. .

o A transmitted or received ASCII character will take whichever form is
appropriate if odd or even parity is selected—for example, 11001000 for .
an odd-parity H, 01001000 for an even-parity H.

o The ASCIT Char column gives the ASCII character name.

o The Interpretation column spells out the meaning of special symbols .
and abbreviations, where necessary.

o The What to Type column indicates what keystrokes generate the ASCII
character (where it is not obvious).

o The columns marked Pri and A/¢ indicate what displayed character
results from each code when using the primary or alternate display .

character set, respectively. Boldface is used for inverse characters; italic
is used for flashing characters.

Note that the values $40 through $5F (and $C0 through $DF) in the .
The MouseText characters are shown in alternate character set are displayed as MouseText characters if
Table E-7. MouseText is turned on.

244 Appendix E: Conversion Tables




Note: The primary and alternate displayed character sets in Tables E-5
through E-12 are the result of firmware mapping. The character generator
ROM actually contains only one character set. The firmware mapping
procedure is described in the section “Inverse and Flashing Text,” in

Chapter 3.

Table E-5. Control Characters, High Bit Off

ASCII
Binary Dec Hex Char Interpretation What to Type Pri Alt
0000000 0 $00 NUL Blank (null) @ @
0000001 1 $01 SOH Start of Header A A
0000010 2 502 STX Start of Text B B
0000011 3 $03 ETX End of Text C C
0000100 4 $04 EOT End of Transm. = D D
0000101 b $05 ENQ Enquiry E E
0000110 6 $06 ACK Acknowledge F F
0000111 7 $07 BEL Bell CONTROL H G G G
0001000 8 508 BS Backspace or(=) H H
0001001 9 $09 HT Horizontal Tab [ConTROL H1] 0r [TAB] I I
0001010 10 $0A  LF Line Feed or @) J J
0001011 11 $0B VT Vertical Tab or(1] K K
0001100 12 $0C FF Form Feed L L
0001101 13 $0D CR Carriage Return or M M
0001110 14 $0E S0 Shift Out N N
0001111 15 $OF  SI Shift In 0 0
0010000 16 $10 DLE Data Link Escape [F] P P
0010001 17 811 DC1 Device Control 1 Q] Q Q
0010010 18 §12 DC2 Device Control 2 R R
0010011 19 $13 DC3 Device Control 3 (s] S S
0010100 20 514 DC4 Device Control 4 T T
0010101 21 $16 NAK Neg. Acknowledge or(=] U U
0010110 22 $16 SYN Synchronization \Y \'}
0010111 23 $17 ETB End of Text Blk. w w
0011000 24 $18 CAN Cancel (] X X
0011001 25 $19 EM End of Medium Y Y
0011010 26 $1A SUB Substitute Z Z
0011011 27 $1B ESC Escape [CoNTROL HT] Or [ESC) [ [
0011100 28 $1C FS File Separator \ \
0011101 29 $1D GS Group Separator (1] | 1
0011110 30 S1E RS Record Separator - -~
0011111 31 $1F Us Unit Separator = =

Eight-Bit Code Conversions

245




Table E-6. Special Characters, High Bit Off

Binary

0100000
0100001
0100010
0100011
0100100
0100101
0100110
0100111
0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111
0110000
0110001
0110010
0110011
0110100
0110101
0110110
0110111
0111000
0111001
0111010
0111011
0111100
0111101
0111110
0111111

Hex

$20
$21
$22
$23
524
$25
$26
$27
$28
$29
$2A
$2B
$2C
$2D
$2E
$2F
$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
$3B
$3C
$3D
$3E
$3F

ASCII
Char Interpretation What to Type

SP Space bar
!

"

o)
=
=

Closing Quote

+ *— cgoeerw

Comma
Hyphen
Period

R T '@B@“% g
e W N ‘-FBQ“* -

L WIS R WD -=O~"
WoD =3 OO O

O 00 3T O O DD O

-
-

AT
T
VA

Appendix E: Conversion Tables




Table E-7. Uppercase Characters, High Bit Off

Binary

1000000
1000001
1000010
1000011
1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000
1011001
1011010
1011011
1011100
1011101
1011110
1011111

Hex

340
$41
$42
$43
$44
$45
$46
§47
$48
$49
$4A
$4B
$4C
54D
$4E
$4F
$50
$51
$52
$53
$54
$55
$56
$57
$58
$59
$5A
$5B
$5C
$5D
$5E
$5F

ASCII
Char

‘_'/'—N*CMQ<JC~%U3=UQ”UOZZT‘WL"_‘IGJ‘EE’JUOW>@

>

Interpretation

Opening Bracket
Reverse Slant
Closing Bracket
Caret

Underline

Eight-Bit Code Conversions

What to Type

ST NN NI ISNYROTORENAS NI ANNLawEg T

=

“HEt D¢ MAMUNINY OR

v,

[
L}

Tl le_UNWRIT | e




Table E-8. Lowercase Characters, High Bit Off

248 Appendix E; Conversion Tables

ASCII

Binary Dec Hex Char Interpretation What to Type Pri Alt .
1100000 96 $60 ) Opening Quote :

1100001 97 $61 a ! a .
1100010 98 $62 b & b

1100011 99 $63 c # ¢

1100100 100 $64 d $ d

1100101 101 $65 e % e .
1100110 102 $66 f & f

1100111 103 $67 g ! g

1101000 104 $68  h ( h .
1101001 105 $69 i ) i

1101010 106 $6A j * J

1101011 107 $6B  k + k .
1101100 108 $6C 1 s 1

1101101 109 $6D m - m

1101110 110 $6E n . n

1101111 111 $6F 0 / 0 .
110000 112 $710  p 0 p

1110001 113 §71 q 1 q

110010 14§72 2 r B
1110011 115 §73 $ 3 s

1110100 116 $74 t 4 t

1110101 117 $75 u 5 u .
1110110 118 $76 v 6 v

1110111 119 $77 w 7 w

1111000 120 $78 X 8 X .
1111001 121 $79 y 9 y

1111010 122 $7TA Z 7 z

1111011 123 $7B { Opening Brace 5 {

1111100 124 $7C | Vertical Line < | .
1111101 125 $7D } Closing Brace = }

1111110 126 $7E = Overline (Tilde) > -

1111111 127 $7F DEL Delete/Rubout ? DEL .




Table E-9. Control Characters, High Bit On

10010101 149 $95 NAK Neg. Acknowledge
10010110 150 $96 SYN Synchronization
10010111 151 $a7 ETB End of Text Blk.
10011000 152 $98 CAN Cancel

(o]
o
4
3
3]
g
S
(1]

QOO0
oggo
ElEIEIE
ClElEE
HHEE

ASCII
Binary Dec Hex Char Interpretation What to Type Pri Alt
10000000 128 $80 NUL Blank (null) @ @
10000001 129 $81 SOH Start of Header A A
10000010 130 $82 STX Start of Text B B
10000011 131 $83 ETX End of Text C C
10000100 132  $84  EOT End of Transm. (CONTROL}D) D D
10000101 133 $85 ENQ Enquiry (E] E E
10000110 134  $86  ACK  Acknowledge (CoNTROLHF) F F
10000111 135 $87 BEL Bell (@] G G
10001000 136 $88 BS Backspace or[=J H H
10001001 137 $89 HT Horizontal Tab (CONTROL {1 0T [TAB] I I
10001010 138 $8A LF Line Feed or3] J J
10001011 139 $8B VT Vertical Tab or K K
10001100 140 $8C FF Form Feed L L
10001101 141 38D CR Carriage Return or M M
10001110 142 $8E S0 Shift Out N N
10001111 143 $8F I Shift In 0 0
10010000 144 $90 DLE Data Link Escape CONTROL H P P P
10010001 145 $91 DC1 Device Control 1 CONTROL HQ] Q Q
10010010 146 $92 DC2 Device Control 2 R R
10010011 147 $93 DC3 Device Control 3 S S
10010100 148 $94 DC4 Device Control 4 T T
U U
v v
W W
X X
10011001 153 $99 EM End of Medium Y Y
10011010 154 $9A SUB Substitute (Z] / Z
10011011 165 $9B ESC Escape [conTROL HT) or [ESC] [ [
10011100 166 $9C FS File Separator \ A
10011101 157 $9D GS Group Separator ] ]
10011110 158 $9E RS Record Separator - -
10011111 159 $9F Us Unit Separator =] - -
Eight-Bit Code Conversions 249




Table E-10. Special Characters, High Bit On

Binary

10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111

10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
10111111

250

Dec

160
161
162
163
164
165
166
167

168
169
170
171
172
173
174
176
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

Hex

$A0
$Al
$A2
$A3
$A4
$A5
$A6
$AT

$A8
$A9
$AA
$AB
$AC
$AD
$AE
$AF
$BO
$B1
$B2
$B3
$B4
$B5
$B6
$B7
$B8
$BY
$BA
$BB
$BC
$BD
$BE
$BF

ASCII
Char

SP
!
#
$
%
&

1

S

oo =] 00 U W= QoD — O "

Sy A

Interpretation What to Type

Space SPACE bar

Closed Quote
(acute accent)

Comma
Hyphen
Period

Appendix E: Conversion Tables

Pri

“pose e %

€900 ~1 T U W Lo DO D~ 4+

AT

O 00 =3 T O W= QO DD — O " + s N

A




Table E-11. Uppercase Characters, High Bit On

Binary

11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111

Dec

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Hex

$C0
$C1
$C2
$C3
$C4
8Ch
$C6
$C7
$C8
$C9
$CA
$CB
$CC
$CD
$CE
$CF
$D0
$D1
$D2
$D3
$D4
$D5
$D6
$D7
$D8
$D9
$DA
$DB
$DC
$DD
$DE
$DF

ASCII
Char

>‘—'/_'N>-<:><24(:—301:0@’0022?'?1‘—‘—‘:[1@“10150@}@

Interpretation

Opening Bracket
Reverse Slant
Closing Bracket
Caret

Underline

Eight-Bit Code Conversions

What to Type

,_‘/'_‘N-<1¥><£<(:'—]CDFU<O"UOZEFW‘—"_‘EO"‘JMUOWP@ ?

=

—'/'—'Nm::x:g<<::»—am:c©"uozgr'7::f—c'—'mmﬂjmcom>@

251



Table E-12. Lowercase Characters, High Bit On

ASCII
Binary Dec Hex Char Interpretation What to Type

11100000 224 $E0 : Open Quote
11100001 225 $E1
11100010 226 $E2
11100011 227 $E3
11100100 228 $E4
11100101 229 $EB
11100110 230 $E6
11100111 231 $E7
11101000 232 $E8
11101001 233 $E9
11101010 234 $EA
11101011 235 $EB
11101100 236 $EC
11101101 237 $ED
11101110 238 $EE
11101111 239 $EF
11110000 240 $F0
11110001 241 $F1
11110010 242 $F2
11110011 243 $F3
11110100 244 $F4
11110101 245 $F5H
11110110 246 $F6
11110111 247 $F7
11111000 248 $F8
11111001 249 $F9
11111010 250 $FA

o)
=
-

T TN X g